ARIMA模型与GRNN模型对肺结核发病率预测的对比研究
CSTR:
作者:
作者单位:

第二军医大学海军医学系航海特殊损伤防护教研室,成都军区总医院药剂科,第二军医大学基础部数理教研室,第二军医大学训练部信息化办公室,中国人民解放军第309医院全军结核病研究所,第二军医大学海军医学系航海特殊损伤防护教研室

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金(2013M542491).


Comparative study on ARIMA model and GRNN model for predicting the incidence of tuberculosis
Author:
Affiliation:

Faculty of Navy Medicine,Second Military Medical University,Department of Pharmacy,General Hospital of Chengdu Military Region,Department of Mathematics & Physics,College of Basic Medical Sciences,Second Military Medical University,Informatization Office,Division of Training,Second Military Medical University,Institute for Tuberculosis Research,the 309th Hospital of PLA,Faculty of Navy Medicine,Second Military Medical University

Fund Project:

Supported by Project of China Postdoctoral Science Foundation(2013M542491).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 比较自回归移动平均(ARIMA)模型与广义回归神经网络(GRNN)模型对于肺结核发病率的预测性能。 方法 根据我国2004年1月至2012年12月的肺结核逐月发病率数据资料,应用Eviews 7.0.0.1建立ARIMA模型,应用Matlab 7.1的神经网络工具箱建立GRNN模型;选取2013年肺结核逐月发病率数据对两种预测模型进行检验,比较预测结果。 结果 ARIMA模型和GRNN模型的Theil不等系数(TIC)分别是0.034和0.059,说明ARIMA模型对我国2013年肺结核逐月发病率的拟合程度优于GRNN模型,ARIMA模型相对误差绝对值仅为GRNN模型的57.19%。 结论 ARIMA预测模型更适合用于我国肺结核发病率的预测;建议尝试组合模型预测肺结核发病率。

    Abstract:

    Objective To compare the performance of ARIMA model and GRNN model for predicting the incidence of tuberculosis. Methods ARIMA model was set up by Eviews 7.0.0.1 and GRNN model was set up by neural network toolbox of Matlab 7.1 based on the monthly tuberculosis incidence data from January 2004 to December 2012 in China. Monthly tuberculosis incidence data in 2013 were subjected to the two models for testing, and the results were compared between the two groups. Results The Theil unequal coefficients (TIC) were 0.034 and 0.059 for ARIMA model and GRNN model, respectively, indicating that ARIMA model was better than GRNN model to fit with the monthly incidence of tuberculosis in 2013. The absolute value of the relative error for ARIMA model was only 57.19% of GRNN model. Conclusion ARIMA prediction model is more suitable for predicting the incidence of tuberculosis in China, and it is suggested a combination of models should be used to predict the incidence of tuberculosis.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-28
  • 最后修改日期:2015-05-20
  • 录用日期:2015-09-28
  • 在线发布日期: 2016-01-22
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭