基于乘积SARIMA模型的肺结核发病率预测
CSTR:
作者:
作者单位:

第二军医大学海军医学系航海特殊损伤防护教研室,成都军区总医院药剂科,第二军医大学基础部数理教研室,第二军医大学训练部信息化办公室,中国人民解放军第309医院全军结核病研究所,第二军医大学海军医学系航海特殊损伤防护教研室

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金(2013M542491).


Multiplicative SARIMA model for prediction of pulmonary tuberculosis incidence
Author:
Affiliation:

Department of Navigation Special Damage Protection,Faculty of Naval Medicine,Second Military Medical University,Department of Pharmacy, General Hospital, PLA Chengdu Military Area Command,Department of Mathematics & Physics, College of Basic Sciences, Second Military Medical University,Office of Informatization, Division of Training, Second Military Medical University,Institute for Tuberculosis Research, No. 309 Hospital of PLA,Department of Navigation Special Damage Protection,Faculty of Naval Medicine,Second Military Medical University

Fund Project:

Supported by China Postdoctoral Science Foundation (2013M542491).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 应用乘积季节自回归移动平均(seasonal autoregressive integrated moving average,SARIMA)模型对肺结核发病率进行预测研究,探讨其可行性并为肺结核病的防治工作提供科学依据。方法 应用EViews 7.0.0.1软件对我国2004年1月至2012年12月的肺结核逐月发病率建立乘积SARIMA模型并进行拟合,选取2013年1月至12月肺结核发病率数据评价模型的预测性能。结果 建立的SARIMA(2,0,2)×(0,1,1)12模型能较好地拟合既往时间段内肺结核的发病率,对2013年1月至12月肺结核发病率的预测与实际发病率趋势基本吻合,平均误差绝对值为0.416 992,平均误差绝对率为5.350 8%。结论 乘积SARIMA模型能较好地模拟和预测肺结核发病率在时间序列上的变动趋势,将其应用于肺结核发病预测是可行的,具有推广应用前景。

    Abstract:

    Objective To examine the feasibility of using multiple seasonal autoregressive integrated moving average (SARIMA) model for predicting pulmonary tuberculosis (TB) incidence, so as to provide scientific evidence for the prevention and treatment of TB. Methods EViews 7.0.0.1 software was used to create a SARIMA fit model for seasonal incidence of TB on a monthly basis from January 2004 to December 2012, and the predicting performance of the model was tested with TB data from January to December in 2013. Results The established SARIMA (2,0,2)×(0,1,1)12 model could better fit with the previous TB incidence; and it basically well predicted the TB incidence of the 12 months of 2013, with the mean absolute error being 0.416 992 and the mean absolute error rate being 5.350 8%. Conclusion The established multiplicative SARIMA model can better simulate and predict the trend of TB incidence with time, and it may have a future in predicting the incidence of TB.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-04-07
  • 最后修改日期:2016-05-23
  • 录用日期:2016-08-26
  • 在线发布日期: 2016-08-26
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭