极端学习机模型在张家口市手足口病发病率预测中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

衡水市科技计划自筹经费项目(2016014001Z).


Application of extreme learning machine model in prediction of hand-foot-and-mouth disease incidence in Zhangjiakou city
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨极端学习机(ELM)模型在手足口病发病率预测中的应用,并与神经网络模型进行比较。方法 收集2008年5月至2017年7月张家口市手足口病月发病率资料,并组成具有111个数据的时间序列,随机选择数据集中75%的数据进行学习建模,剩余25%作为预测的检验数据,以对2种模型的预测效果进行验证。结果和结论 ELM学习的平均相对误差(MRE)为0.05,预测的MRE为0.07;神经网络学习的MRE为0.09,预测的MRE为0.12。ELM模型的学习效果和预测效果优于神经网络模型,可以提高预测的精度,具有较高的实用价值。

    Abstract:

    Objective To explore the application of extreme learning machine (ELM) model in predicting the incidence of hand-foot-and-mouth disease, and to compare the difference between ELM model and neural network model. Methods The monthly incidence data of hand-foot-and-mouth disease from May 2008 to Jul. 2017 in Zhangjiakou were collected and formed a time series with 111 data. To validate and evaluate the prediction performance of the two models, 75% of the randomly selected dataset were used to train model and the remaining 25% were used as testing data for prediction. Results and conclusion The mean relative errors (MREs) of learning and prediction based on ELM model were 0.05 and 0.07, respectively. The MREs of learning and prediction based on neural network model were 0.09 and 0.12, respectively. The learning and prediction effects of ELM model are better than neural network model. It can improve the accuracy of prediction and has high application value.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-14
  • 最后修改日期:2017-10-10
  • 录用日期:
  • 在线发布日期: 2018-07-05
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭