深度学习技术在疾病诊断中的应用
CSTR:
作者:
作者单位:

西北工业大学生命学院,西北工业大学生命学院,西北工业大学生命学院,西北工业大学生命学院,西北工业大学生命学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of deep learning technology in disease diagnosis
Author:
Affiliation:

School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习技术的迅猛发展为辅助医师进行高精度的疾病诊断提供了新的方法和思路。本文综述了医学疾病诊断领域常用的深度学习模型,即卷积神经网络、深度信念网络、受限玻尔兹曼机和循环神经网络模型的原理及特点;然后从肺癌、乳腺癌、糖尿病视网膜病变等几种典型的疾病出发,介绍了深度学习技术在疾病诊断领域的应用;最后基于目前深度学习技术在疾病诊断中的局限性提出了未来发展方向。

    Abstract:

    The rapid development of deep learning technology provides new methods and ideas for achieving the goal of assisting doctors in high-precision diagnosis. In this paper, we summarized the principles and characteristics of deep learning models that are commonly used in disease diagnosis, including convolutional neural networks, deep belief network, restricted Boltzmann machine and circulation neural network model. Then we introduced the application of deep learning technology in disease diagnosis of several typical diseases, such as lung cancer, breast cancer, and diabetic retinopathy. Finally, we proposed the future of deep learning considering the limitations of deep learning technology in disease diagnosis.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-06-21
  • 最后修改日期:2018-08-01
  • 录用日期:2018-09-07
  • 在线发布日期: 2018-09-07
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭