基于多维度特征融合的深度学习骨龄评估模型
CSTR:
作者:
作者单位:

卫宁健康科技集团股份有限公司,卫宁健康科技集团股份有限公司,卫宁健康科技集团股份有限公司,上海交通大学附属儿童医院,上海交通大学附属儿童医院

作者简介:

通讯作者:

中图分类号:

基金项目:

上海交通大学医工交叉重点项目(项目编号YG2017ZD08)


Bone age assessment model based on multi-dimensional feature fusion using deep learning
Author:
Affiliation:

Children's Hospital of Shanghai,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 通过基于特征提取的深度卷积神经网络,结合关键区域特征和人口学信息,评估儿童骨龄。方法 自动识别左手X线图像数据,对图像进行预处理,使用基于深度神经网络的X线图像分析方法,实现左手关节骨龄17个关键区域特征的自动提取,再将骨龄影像特征与临床大数据(人口统计、性别)融合训练骨龄评估模型,测试模型的评估效能。结果 使用基于深度学习的特征区域提取方法比传统图像分析方法可以更好地提取特征信息,结合临床信息从另一维度补充了骨龄发育信息。基于多维度数据特征融合的骨龄评估模型检测得到的骨龄平均绝对误差为0.455,优于传统方法和仅端到端的深度学习方法。结论 相较传统的机器学习特征提取方法,基于特征提取的深度卷积神经网络在骨龄回归模型上有更好的表现,结合人口和性别信息可进一步提升基于图像的骨龄预测准确率。

    Abstract:

    Objective To evaluate the bone age of children using deep convolutional neural network based on feature extraction combined with key features and demographic information.Methods Left hand X-ray images were automatically recognized and preprocessed, and then the 17 key region features of bone age in the left hand joint were automatically extracted by X-ray image analysis method based on deep convolutional neural network. The image features of bone age were combined with clinical data (population statistics and gender) to train and test the bone age assessment model.Results The feature region extraction method based on deep learning had better efficiency in extracting feature information than traditional image analysis method, and the feature information combined with clinical information supplemented the information of bone age from another dimension. The average absolute error measured by bone age assessment model based on multi-dimensional data feature fusion was 0.455, which was better than traditional methods and only end-to-end deep learning method.Conclusion Compared with traditional machine learning methods, the deep convolutional neural network based on feature extraction has better performance, and can improve the predicting accuracy of image-based bone age by combining with population information such as gender and age.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-06
  • 最后修改日期:2018-08-16
  • 录用日期:2018-09-07
  • 在线发布日期: 2018-09-07
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭