基于肿瘤干性相关基因的肾癌预后模型的构建
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R737.11

基金项目:

国家自然科学基金(8172074),上海市科技创新行动计划(11951500).


Construction of a renal cancer prognostic model based on tumor stemness-related genes
Author:
Affiliation:

Fund Project:

Supported by National Natural Science Foundation of China (8172074) and Science and Technology Innovation Action Plan of Shanghai (11951500).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 通过挖掘基因表达汇编(GEO)数据库中肾癌干细胞芯片数据,寻找肾癌细胞干性标志物,并联合癌症基因组图谱(TCGA)数据库中的肾癌临床及转录组数据构建一种评估肾癌预后的模型。方法 从GEO数据库GSE48550数据集中下载芯片数据,筛选肾癌干细胞和正常肾小管上皮细胞之间的差异表达基因,通过基因本体(GO)和基因集富集分析进行功能及通路分析,通过蛋白质-蛋白质相互作用(PPI)网络构建确定肾癌干细胞核心基因。从TCGA数据库下载肾癌患者年龄、临床分期、预后情况及相关基因的表达水平,通过单因素及多因素Cox回归分析筛选肾癌预后的独立危险因素,构建预测肾癌患者总生存期的列线图模型。结果 通过分析肾癌干细胞和正常肾小管上皮细胞的芯片数据,发现差异表达基因富集在细胞趋化、细胞外基质形成及受体配体活性等模块,炎症反应通路、P53通路及TNF-α/NF-κB通路在肾癌干细胞中显著激活。单因素及多因素Cox回归分析结果表明,年龄、临床分期为肾癌预后的独立危险因素,趋化因子家族中的C-X3-C基序趋化因子配体1(CX3CL1)是肾癌预后的独立保护因素。通过评估模型区分度,发现基于年龄、临床分期及CX3CL1表达水平的风险模型可准确预测肾癌患者总体生存率,其中C指数为达到0.803。结论 通过GEO和TCGA数据库联合分析筛选肾癌干性相关基因,构建了一种联合患者年龄、临床分期及CX3CL1表达水平的新模型,新模型可用于评估肾癌患者预后。

    Abstract:

    Objective To mine stemness-related biomarkers of renal cancer based on the renal cancer stem cell microarray data from Gene Expression Omnibus (GEO) database, and to construct a new model for the prognosis of renal cancer with the clinical and transcriptome data of renal cancer in the Cancer Genome Atlas (TCGA) database. Methods The microarray data were downloaded from the GSE48550 dataset of GEO database to screen the differentially expressed genes between renal cancer stem cells and normal renal tubular epithelium cells. Gene function and pathway were identified by Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA). The hub genes of renal cancer stem cells were identified by protein-protein interaction (PPI) network construction. Age, clinical stage, prognosis and expression levels of related genes of patients with renal cancer were downloaded from the TCGA database. The independent risk factors of prognosis of renal cancer were screened by univariate and multivariate Cox regression analyses, and a nomogram model for predicting the overall survival of patients with renal cancer was constructed. Results By analyzing the microarray data of renal cancer stem cells and normal renal tubular epithelial cells, we found that the differentially expressed genes were enriched in the biological processes such as cell chemotaxis, extracellular matrix formation and receptor ligand activity; and inflammatory response, P53 and tumor necrosis factor α (TNF-α)/nuclear factor κB (NF-κB) pathways were significantly activated in renal cancer stem cells. Univariate and multivariate Cox regression analyses showed that age and clinical stage were independent risk factors for the prognosis of renal cancer, and C-X3-C motif chemokine ligand 1 (CX3CL1) in chemokine family was an independent protective factor for the prognosis of renal cancer. The risk model based on age, clinical stage, and CX3CL1 expression level could accurately predict the overall survival rate of patients with renal cancer, with a C-index of 0.803. Conclusion Stemness-related genes of renal cancer is screened through the joint analysis of GEO and TCGA. A new model combining patient age, clinical stage and CX3CL1 expression level is constructed to evaluate the prognosis of renal cancer patients.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-21
  • 最后修改日期:2021-04-13
  • 录用日期:
  • 在线发布日期: 2021-12-18
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭