人工智能在前列腺多参数磁共振成像中的应用及展望
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R737.25

基金项目:

国家临床重点专科军队建设项目(总后卫生部),上海市卫生和计划生育委员会面上项目(M20140149).


Artificial intelligence in multi-parameter magnetic resonance imaging of the prostate:application and prospect
Author:
Affiliation:

Fund Project:

Supported by Military Construction Project for National Clinical Key Speciality (Health Department of PLA General Logistics) and General Project of Shanghai Municipal Commission of Health and Family Planning (M20140149).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    前列腺癌(PCa)是世界上最常见的肿瘤之一。多参数磁共振成像(mpMRI)作为一种非侵入性工具,可以改善前列腺病变的检测、分类和体积量化。机器学习是人工智能(AI)的一个分支,能够快速、准确地分析mpMRI图像,在识别前列腺病变方面有较好的一致性,能够加强PCa的标准化管理,已经成为提高放射科医师诊断效率和准确度的工具。本文总结了AI在前列腺mpMRI中的应用,主要包括前列腺分割,病变检测、分割,以及病变分类表征等,并对未来发展进行了展望。

    Abstract:

    Prostate cancer is one of the most common tumors in the world. Multi-parameter magnetic resonance imaging (mpMRI) as a non-invasive tool, can improve the detection, classification and volume quantification of prostate lesions. Machine learning is a branch of artificial intelligence (AI). It can quickly and accurately analyze mpMRI images, has good consistency in identifying prostate lesions, and can strengthen the standardized management of prostate cancer. It has become a tool for improving the diagnostic efficiency and accuracy of radiologists. This review summarizes the application of AI in mpMRI of the prostate (mainly including prostate segmentation, lesion detection and segmentation, and lesion feature description) and its development in the future.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-15
  • 最后修改日期:2021-05-07
  • 录用日期:
  • 在线发布日期: 2022-09-05
  • 出版日期: 2022-07-20
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭