人工智能在鉴别肝门部胆管癌细胞及周围神经侵袭中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R735.7

基金项目:

上海中医药大学附属龙华医院高层次人才引进科研启动经费(LH02.51.002).


Application of artificial intelligence in identifying hilar cholangiocarcinoma and perineural invasion
Author:
Affiliation:

Fund Project:

Supported by High-level Talent Introduction Program of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (LH02.51.002).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 建立一种用于辅助诊断肝门部胆管癌(HC)的人工智能(AI)算法模型,评价其识别肿瘤细胞及周围神经侵犯(PNI)的能力。方法 采用AI算法对825张HC和175张非癌变组织图像(600张为训练集,300张为测试集,100张为比较数据集)进行深度学习,将不同参数的GoogLeNet和DenseNet相结合的神经网络用于HC细胞和PNI的特征提取和深度学习。比较该AI算法模型与3名病理科医师(副主任医师、主治医师、住院医师各1名)在判断肿瘤有无及肿瘤细胞百分比的差异。结果 基于深度学习的AI算法可以准确识别HC组织标本图像中的肿瘤细胞及PNI。AI算法诊断肿瘤的能力可与经验丰富的病理科副主任医师媲美,且在评估肿瘤细胞百分比方面更胜一筹。结论 AI算法模型在识别HC肿瘤细胞及PNI方面具有辅助作用。

    Abstract:

    Objective To establish an artificial intelligence (AI) algorithm model for the diagnosis of hilar cholangiocarcinoma (HC) and to evaluate its ability to recognize tumor cells and perineural invasion (PNI). Methods AI algorithm was used for deep learning on 825 HC and 175 non-cancerous tissue images (600 for training set, 300 for test set, and 100 for comparison set). The neural network combined with GoogLeNet and DenseNet with different parameters was used for feature extraction and deep learning of HC cells and PNI. The AI algorithm model was compared among 3 pathologists (1 associate chief physician, 1 attending physician and 1 resident) in judging the presence or absence of tumor and the proportion of tumor cells. Results The AI algorithm based on deep learning could accurately identify tumor cells and PNI in HC tissue sample images. The AI algorithm was as good as experienced associate chief physicians in the department of pathology in diagnosing tumors, and was better in estimating the proportion of tumor cells. Conclusion AI algorithm model is helpful in identifying HC cells and PNI.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-03
  • 最后修改日期:2021-06-28
  • 录用日期:
  • 在线发布日期: 2021-07-28
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭