Abstract:Objective To explore the protective effect and mechanism of hydrogen (H2) on ionizing radiation injury of mouse spermatogonia. Methods Mouse spermatogonia GC-1 cells were divided into 4 groups:control group, H2 group, irradiation group and irradiation plus H2 group. The cells in the irradiation group and the irradiation plus H2 group were given single 60Co γ ray irradiation with a cumulative dose of 8 Gy (dose rate 0.897 Gy/min). The cells in the H2 group and the irradiation plus H2 group were cultured in a H2 cell culture system (75% H2, 20% O2 and 5% CO2) for 1 h before irradiation. Cell counting kit 8 (CCK-8) and flow cytometry were used to detect the effects of irradiation and H2 treatment on viability and apoptosis of GC-1 cells 24 h after irradiation. The 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and mitochondrial membrane potential JC-1 fluorescence probes were used to detect the effects of irradiation and H2 treatment on intracellular reactive oxygen species (ROS) and mitochondrial membrane potential of GC-1 cells 2 h after irradiation. Western blotting was used to detect the effects of irradiation and H2 treatment on the expression of mitochondrial apoptosis pathway proteins (B-cell lymphoma-associated protein x[Bax], cytochrome c[Cyt-c] and cleaved caspase 3[an activation product of caspase 3]) in GC-1 cells 24 h after irradiation. Results CCK-8 results showed that H2 significantly increased the viability of GC-1 cells after irradiation (P<0.01), and flow cytometry showed that H2 significantly reduced the apoptosis rate (P<0.01). The results of specific fluorescent probe staining showed that H2 reduced the increase of intracellular ROS and inhibited the decrease of mitochondrial membrane potential after irradiation (P<0.01 or P<0.05). Western blotting results showed that H2 inhibited the expression of mitochondrial apoptotic proteins (Bax, Cyt-c and cleaved caspase 3) in GC-1 cells after irradiation (P<0.01 or P<0.05). Conclusion H2 can protect mouse spermatogonia from ionizing radiation injury of 60Co γ ray irradiation by reducing ROS production, protecting mitochondrial membrane potential, and inhibiting mitochondrial apoptotic pathway.