基于超声内镜影像组学和机器学习的胃肠道间质瘤与非胃肠道间质瘤鉴别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市科学技术委员会科技创新行动计划(21Y11908100,21S31903500).


Differentiating gastrointestinal stromal tumors from non-gastrointestinal stromal tumors based on endoscopic ultrasound radiomics and machine learning
Author:
Affiliation:

Fund Project:

Supported by Scientific and Technological Innovation Action Plan of Science and Technology Commission of Shanghai Municipality (21Y11908100, 21S31903500).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 建立并验证基于超声内镜影像组学和机器学习的胃肠道间质瘤与非胃肠道间质瘤的鉴别方法。方法 纳入符合标准的患者435例,采集胃肠道间质瘤(257例)与非胃肠道间质瘤(包括胃平滑肌瘤145例、神经鞘瘤33例)超声内镜图像共3 279张,按患者比7∶3分为训练集和测试集。采用Pyradiomics软件提取肿瘤影像组学特征,并应用主成分分析(PCA)、最小绝对收缩和选择算子(LASSO)、极致梯度提升树(XGBoost)、随机森林、递归式特征消除(RFE)算法设计特征筛选方案,基于所选特征通过支持向量机分类器建立模型。通过ROC曲线评估各模型对胃肠道间质瘤与非胃肠道间质瘤的预测效能。结果 由最终筛选得到的超声内镜影像组学特征建立影像组学模型,基于5种特征筛选方案(PCA、PCA+LASSO、PCA+XGBoost、PCA+随机森林、PCA+RFE)建立的预测模型的AUC分别为0.581、0.870、0.874、0.860、0.661。结论 PCA+XGBoost的特征筛选方案效果最佳,基于上述影像组学和机器学习方法鉴别胃肠道间质瘤与非胃肠道间质瘤的模型可用于患者的术前预测。

    Abstract:

    Objective To establish and validate methods for differentiating gastrointestinal stromal tumor (GIST) from non-GIST based on endoscopic ultrasound radiomics and machine learning. Methods A total of 435 eligible patients were enrolled, and 3 279 endoscopic ultrasound images of GIST (257 cases) and non-GIST (including 145 cases of gastric leiomyoma and 33 cases of schwannoma) were collected and assigned (case proportion, 7:3) to training set or test set. Pyradiomics software was used to extract tumor radiomics features, and principal component analysis (PCA), least absolute shrinkage and selection operator (LASSO), extreme gradient boosting (XGBoost), random forest, and recursive feature elimination (RFE) algorithms were used to design feature screening schemes. Based on the selected features, the models were established by support vector machine classifier. Receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of the models for GIST and non-GIST. Results The radiomics prediction models were established based on the selected features. The area under curve values of 5 models based on different feature screening methods (PCA, PCA+LASSO, PCA+XGBoost, PCA+random forest, and PCA+RFE) were 0.581, 0.870, 0.874, 0.860, and 0.661, respectively. Conclusion PCA+XGBoost algorithm has the best feature screening effect. A model based on the radiomics and machine learning methods in this study for distinguishing GIST from non-GIST can be used for preoperative prediction of patients.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-24
  • 最后修改日期:2023-11-05
  • 录用日期:
  • 在线发布日期: 2024-01-27
  • 出版日期: 2024-01-20
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭