利用机器学习算法构建浸润性乳腺癌预后模型:基于SEER数据库
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Construction of prognostic model for invasive breast cancer using machine learning algorithm: based on SEER database
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 利用机器学习算法分析浸润性乳腺癌预后的影响因素并构建预后模型。方法 采集美国监测、流行病学和终点事件(SEER)数据库中2010—2015年24 584例浸润性乳腺癌患者的临床和病理资料。利用单因素分析和logistic回归分析筛选预后变量,使用logistic回归、决策树、支持向量机、随机森林、人工神经网络5种机器学习分类算法建立生存预后的预测模型,评价各建模方法的预测能力,以灵敏度、特异度、准确度及ROC曲线的AUC作为模型的评价指标。结果 在21个模型输入变量中,组织分级、T分期、N分期、M分期、脑转移、人表皮生长因子受体2表达状态、手术治疗等因素对浸润性乳腺癌患者生存预后具有较大影响,5种机器学习算法构建的预后模型中随机森林和人工神经网络模型预测效果较好。结论 利用机器学习算法构建的浸润性乳腺癌预后模型的预测效果较好,可辅助医师判断浸润性乳腺癌患者的预后情况和治疗效果。

    Abstract:

    Objective To analyze the influencing factors of the prognosis of invasive breast cancer by using machine learning algorithms and construct prognostic model. Methods The clinical and pathological data of 24 584 patients with invasive breast cancer from 2010 to 2015 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate analysis and logistic regression analysis were used to screen the prognostic variables. Five machine learning classification algorithms including logistic regression, decision tree, support vector machine, random forest and artificial neural network were used to establish the prediction model of survival prognosis. The prediction ability of each modeling method was evaluated. Sensitivity, specificity, accuracy and area under curve of receiver operating characteristic curve were used as evaluation indexes of the model. Results Among the 21 model input variables, histological grade, T stage, N stage, M stage, brain metastasis, expression status of human epidermal growth factor receptor 2 and surgical treatment had great impacts on the survival prognosis of patients with invasive breast cancer. Among the prognostic models constructed by 5 machine learning algorithms, random forest and artificial neural network models had better predictive effects. Conclusion The prognosis model of invasive breast cancer constructed by machine learning algorithm has good prediction effect, which can assist doctors to judge the prognosis and treatment effect of patients with invasive breast cancer.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-07
  • 最后修改日期:2023-10-08
  • 录用日期:
  • 在线发布日期: 2024-07-23
  • 出版日期: 2024-07-20
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭