上尿路结石术后尿源性脓毒血症人工智能预警模型:基于临床多模态数据
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西科技重大专项(桂科AA22096030,桂科AA22096032),广西医科大学基因组重点实验室开放课题(GXGPMC202304).


Artificial intelligence warning model for urosepsis after upper urinary tract stone surgery: based on clinical multimodal data
Author:
Affiliation:

Fund Project:

Supported by Science and Technology Major Project of Guangxi (AA22096030, AA22096032) and Open Project of Key Laboratory of Genomics of Guangxi Medical University (GXGPMC202304).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 利用多种机器学习算法构建并验证上尿路结石患者术后发生尿源性脓毒血症的预测模型。方法 纳入2018年6月至2023年6月在广西医科大学第六附属医院接受手术治疗的上尿路结石患者7 464例,其中622例(8.33%)术后发生尿源性脓毒血症。将所有患者按7∶3比例分为训练集(5 224例)和验证集(2 240例)。采用极限梯度提升(XGBoost)、logistic回归、轻量级梯度提升机(LightGBM)、随机森林(RF)、自适应增强(AdaBoost)、梯度提升决策树(GBDT)6种机器学习算法构建术后发生尿源性脓毒血症预测模型,并通过ROC曲线、沙普利加性解释(SHAP)分析、校准曲线和决策曲线分析(DCA)评估模型的预测能力和临床效益等。结果 纳入模型的临床参数包括BMI、手术次数、心率、Barthel指数、静脉血栓栓塞(VTE)风险评分、性别、美国麻醉医师协会(ASA)分级、尿亚硝酸盐及尿白细胞。在训练集中,XGBoost、LightGBM和RF模型表现优异,ROC曲线AUC值均达到1.00。在验证集中,logistic回归模型表现最佳,ROC曲线AUC值为0.76,具有较好的预测稳定性和校准度;AdaBoost和GBDT模型次之,AUC值分别为0.74和0.75,而LightGBM、XGBoost和RF模型的AUC值分别为0.71、0.70和0.68。在模型的可解释性方面,SHAP分析显示,变量贡献度由大到小依次为心率、尿白细胞、性别、BMI、Barthel指数、VTE风险评分、尿亚硝酸盐、手术次数和ASA分级。结论 成功构建上尿路结石术后发生尿源性脓毒血症的早期风险预测logistic回归模型,该模型具有较好的预测性能和校准度,可有效辅助临床诊断。

    Abstract:

    Objective To construct and validate a prediction model for urosepsis in patients after upper urinary tract stone surgery using various machine learning algorithms. Methods A total of 7 464 upper urinary tract stone patients who underwent surgery at the Sixth Affiliated Hospital of Guangxi Medical University from Jun. 2018 to Jun. 2023 were enrolled and randomly assigned to training (5 224 cases) or validation sets (2 240 cases) at a ratio of 7∶3. Among them, 622 (8.33%) cases developed urosepsis postoperatively. Six machine learning algorithms, including extreme gradient boosting (XGBoost), logistic regression, light gradient boosting machine (LightGBM), random forest (RF), adaptive boosting (AdaBoost), and gradient boosting decision tree (GBDT), were used to construct prediction models for postoperative urosepsis. The model’s predictive ability and clinical benefits were evaluated using receiver operating characteristic (ROC) curves, Shapley additive explanation (SHAP) analysis, calibration curves, and decision curve analysis (DCA). Results The clinical features included body mass index (BMI), number of surgeries, heart rate, Barthel index, venous thrombo embolism (VTE) risk assessment, gender, American Society of Anesthesiologists (ASA) grade, urinary nitrite, and urinary leukocyte in the models. In the training set, the XGBoost, LightGBM, and RF models performed excellently, with area under curve (AUC) values of ROC curves reaching 1.00. In the validation set, the logistic regression model performed the best, with an AUC value of ROC curve of 0.76, showing good predictive stability and calibration. The AdaBoost and GBDT models followed with AUC values of 0.74 and 0.75, respectively, while the AUC values of the LightGBM, XGBoost, and RF models were 0.71, 0.70, and 0.68. In terms of model interpretability, SHAP analysis showed the contribution of variables in a descending order as: heart rate, urinary leukocytes, gender, BMI, Barthel index, VTE risk assessment, urinary nitrite, number of surgeries, and ASA grade. Conclusion A logistic regression model for early risk prediction of postoperative urosepsis in upper urinary tract stone patients has been successfully constructed. This model has good predictive performance and calibration, and can effectively assist clinical diagnosis.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-03
  • 最后修改日期:2025-05-19
  • 录用日期:
  • 在线发布日期: 2025-07-22
  • 出版日期: 2025-07-20
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭