DOI:10.3724/SP. J. 1008.2011.00053

· 论 著。

HPLC-MS 法评价 2 种茴拉西坦胶囊的人体生物等效性

吕 磊,赵 亮,周闺臣,陈 俊,张国庆*

第二军医大学东方肝胆外科医院药材科,上海 200438

[摘要] **目的** 建立 HPLC-MS 法测定人血浆中茴拉西坦的活性代谢物对甲氧基苯甲酰氨基丁酸(ABA)的浓度,比较 2 种茴拉西坦胶囊的人体生物等效性。 **方法** 24 名健康男性志愿者单剂量交叉口服受试制剂或参比制剂 200 mg,采用 HPLC-MS 法测定血浆中不同时间点茴拉西坦代谢物 ABA 的血药浓度,计算主要药代动力学参数及相对生物利用度,评价 2 种制剂的生物等效性。 **结果** 受试制剂和参比制剂的主要药动学参数: C_{\max} 分别为(9.30±5.13)和(8.70±3.17) μ g/ml; t_{\max} 分别为(38.41±17.89)和(39.09±19.92) min; $t_{1/2}$ 分别为(37.21±10.51)和(38.45±9.24) min;AUC₀₊分别为(555.21±157.10)和(545.39±97.22) μ g/(ml·min);AUC_{0-∞}分别为(566.24±158.01)和(554.71±100.32) μ g/(ml·min)。以 AUC₀₊和 AUC_{0-∞}计算,受试制剂的相对生物利用度 F_{0+} 和 $F_{0-∞}$ 分别为(101.22±17.17)%和(101.52±16.63)%。 2 种制剂的主要药代动力学参数差异无统计学意义。 **结论** 2 种茴拉西坦胶囊具有生物等效性。

[关键词] 茴拉西坦;对甲氧基苯甲酰氨基丁酸;生物等效性;高压液相色谱-质谱法

[中图分类号] R 969.1 [文献标志码] A [文章编号] 0258-879X(2011)01-0053-05

HPLC-MS in evaluating bioequivalence of two kinds of aniracetam capsules in healthy volunteers

LÜ Lei, ZHAO Liang, ZHOU Gui-chen, CHEN Jun, ZHANG Guo-qing*

Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China

[Abstract] Objective To establish a HPLC-MS method for determinating the concentration of 4-p-anisamidobutyric acid (ABA), the main active metabolite of aniracetam capsules in the plasma, and to compare the bioequivalence of two aniracetam capsules in healthy volunteers. Methods Twenty-four healthy male volunteers were randomly given an oral single dose of 200 mg test or reference aniracetam capsules in a crossover manner. The concentrations of ABA were assayed by HPLC-MS at different time points. The main pharmacokinetic parameters and the relative bioavailability of two preparations were calculated, and their bioequivalence was evaluated. Results The pharmacokinetic parameters of test and reference preparations were as follows: C_{max} being (9.30 ± 5.13) and (8.70 ± 3.17) $\mu\text{g/ml}$; t_{max} being (38.41 ± 17.89) and (39.09 ± 19.92) min; $t_{1/2}$ being (37.21 ± 10.51) and (38.45 ± 9.24) min; AUC_{0-t} being (555.21 ± 157.10) and (545.39 ± 97.22) $\mu\text{g/(ml} \cdot \text{min)}$, and AUC_{0-c} being (566.24 ± 158.01) and (554.71 ± 100.32) $\mu\text{g/(ml} \cdot \text{min)}$, respectively. Relative bioavailability F_{0-t} and F_{0-c} values of the test preparation were (101.22 ± 17.17) % and (101.52 ± 16.63) %, respectively. No significant differences were found in the main pharmacokinetic parameters between the two preparations. Conclusion The two aniracetam preparations tested in the present study are bioequivalent.

[Key words] aniracetam; 4-p-anisamidobutyric acid; bioequivalence; high pressure liquid chromatography-mass spectrometry

[Acad J Sec Mil Med Univ, 2011, 32(1):53-57]

茴拉西坦,又名阿尼西坦、脑康酮,是γ-氨基丁酸(GABA)的环化衍生物,可以通过血脑屏障选择性作用于中枢神经系统,为脑功能改善药。本品对于脑溢血、脑梗死,以及脑震荡、脑挫伤后的头痛、头晕、睡眠困难等脑功能障碍均有改善作用,特别是对脑血管疾病及中老年性的记忆力减退有明显疗效,

可作为老年性痴呆的预防和治疗用药^[1]。本品口服 吸收好,不良反应较少,偶有口干、嗜睡症状,停药后 消失。

茴拉西坦在体内吸收迅速,血中达峰时间为 20~40 min,半衰期短。由于肝清除率高,口服后血 浆浓度较低,原形药物难以检测。其主要活性代谢 产物对甲氧基苯甲酰氨基丁酸(ABA)约占体内生物转化产物的70%,血药浓度较高,且稳定性好^[2]。本研究建立了一种灵敏、准确、简便的 HPLC-MS 方法,以已经上市的无锡凯西药业有限公司生产的茴拉西坦胶囊为参比制剂,通过测定受试者血浆中茴拉西坦代谢物 ABA 的浓度,评价2种茴拉西坦剂型的生物等效性,为临床合理选用药物提供依据。

1 材料和方法

- 1.1 仪器 安捷伦 1100 高效液相色谱串联 1946D 单四级杆质谱(美国安捷伦公司),配有 ESI 源及 ChemStation 工作站。XW-80A 型涡旋混合器(上海 医大仪器厂),TGL-16G 型高速离心机(上海安亭科 学仪器厂),Mettler AE240 十万分之一电子天平(瑞 士 Mettler 公司)。
- 1.2 药品和试剂 受试制剂为茴拉西坦胶囊(山西亚宝药业集团股份有限公司研制,规格 0.2 g/粒,批号:091001);参比制剂为茴拉西坦胶囊(无锡凯西药业有限公司生产,规格 0.1 g/粒,批号:090502)。对照品 ABA(上海盟瀚化工科技有限公司提供,纯度>99%),内标咖啡酸(中国药品生物制品检定所,批号:110885-200102)。甲酸、甲醇为色谱纯(美国Fisher 公司),水为纯水。
- 1.3 受试者选择 24 名健康男性受试者,年龄 20~30岁,平均(23±2.95)岁,体质指数在 19~24 kg/m²。体格检查正常;实验室检查显示 X 线胸透,心电图,肝、肾功能和血象无异常。无烟酒嗜好、无药物过敏史和药物依赖史、无精神病史及其他慢性病史。试验前 2 周内未服任何药物。试验方案经本院医学伦理委员会批准,试验前所有受试者均签署知情同意书。
- 1.4 试验方案 本试验采用双周期自身交叉对照试验设计,每个周期单次口服给药,药物清洗期为 1 周。采用 SAS 9.1.3 统计软件区组随机化的方式将 24 名受试者随机分为 2 组。每组受试者每次试验时分别服用受试制剂或参比制剂。给药剂量按照已上市剂型的常规用法用量,均为 0.2 g/次,其中受试制剂为 0.2 g×1 粒,参比制剂为 0.1 g×2 粒。

试验场所设在本院药物临床试验机构 I 期病房。受试者于试验前 1 d 17:00 前入住 I 期临床试验病房,统一进食低脂餐,然后禁食过夜;次日早上先留取空白血,然后按设计剂量用 200~250 ml 温开水一次性服用研究药物。用药 2 h 后方可饮水,

4 h后进食统一低脂标准餐。用药后 30 min、2 h 和 4 h,进行包括体温、脉博、血压和呼吸等生命体征的 检测。试验期间,由有资质的医护人员进行临床观察,及时记录和处理不良事件。

1.5 血样采集 受试者分别于每周期给药前 20 min,及给药后 5、10、15、20、30、45、60、80、100、120、150、180、210 和 240 min 采集静脉血 4 ml,肝素抗凝,1 $790 \times g$ 离心 5 min,取血浆一式两份,于-40 保存备用。

1.6 血药浓度测定

1.6.1 色谱条件 色谱柱: SHISEIDO MG-C₁₈ (100 mm×3.0 mm,3.0 μ m,日本资生堂公司),保护柱: Agilent XDB-C₁₈ (12.5 mm×4.6 mm,5.0 μ m,美国安捷伦公司)。流动相:甲醇:水(含0.1%甲酸)=34:66(V/V);流速:0.5 ml/min,进样时间 10 min,柱温:30 $^{\circ}$ 、进样量:5 μ l,柱后分流比2:1。

1.6.2 质谱条件 采用 ESI 源正离子模式,毛细管电压 4 000 V,干燥气流速 10 L/min,雾化气压力 40 psi(1 psi=6 894.8 Pa),干燥气温度 350℃。选择离子模式(SIM)2 min 开始监测内标咖啡酸的[M+H]+181.1,碎片电压 70 V; 5.2 min 开始监测样品 ABA 的[M+H]+238.1 和[M+Na]+260.1,碎片电压 100 V。

1.6.3 溶液配制 ABA 标准溶液的配制:精密称取 ABA 对照品 10.6 mg,置于 25 ml 容量瓶中,加甲醇溶解并稀释至刻度,摇匀,即得 424 μ g/ml ABA储备液。再分别取适当体积置于 10 ml 容量瓶中以甲醇依次稀释,配成浓度分别为 0.106、0.212、0.848、2.12、8.48、21.2、42.4 μ g/ml 系列 ABA 标准溶液,置于 4℃冰箱保存待用。

内标咖啡酸标准溶液的配制:精密称取咖啡酸对照品 2.8 mg,置于 25 ml 容量瓶中,加甲醇溶解并稀释至刻度,摇匀,即得 112 μ g/ml 的内标储备液。取该储备液 1 ml 置于 10 ml 容量瓶中,加入甲醇稀释至刻度,摇匀,即得 11.2 μ g/ml 咖啡酸甲醇标准溶液,置于 4℃冰箱保存待用。

1.6.4 血浆样品预处理 精密量取 100 μ l 血浆样品,置 1.5 ml 塑料离心管中,加入 11.2 μ g/ml 咖啡酸甲醇溶液 150 μ l,涡漩混合 2 min 后,7 830×g 离心 10 min,取 200 μ l 上清液于进样瓶中,5 μ l 进样。 1.7 统计学处理 采用 SAS 9.1.3 统计软件包进行统计分析,检验水平(α)为 0.05。分别将受试制剂

与参比制剂的药代动力学参数 AUC_{0-t} 、 $AUC_{0-\infty}$ 及 C_{max} 经对数转换后,进行多因素方差分析,及在 $\alpha=0.05$ 水平上进行双向单侧 t 检验和 $(1-2\alpha)$ %置信区间检验;对 t_{max} 进行非参数检验(Wilcoxon 符号秩检验)。

2 结 果

2.1 方法学考察

2.1.1 特异性 取 6 个来源于不同个体的空白血浆 $100~\mu$ l,不加 ABA 与内标咖啡酸,均以甲醇补足体积,其余按 1.6.4 项下操作。图谱见图 1,在 ABA 及内标的保留时间处均没有内源性物质的干扰,说明不同来源血浆中的内源性物质不干扰测定。

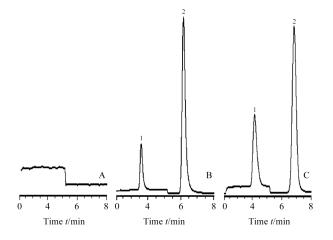


图 1 血浆中 ABA 和内标咖啡酸的典型色谱图
Fig 1 Chromatograms of ABA and internal
standard caffeic acid in human plasma

A: Blank plasma; B: Blank plasma spiked with ABA(10.6 μ g/ml) and caffeic acid (16.8 μ g/ml); C: Subject plasma spiked with caffeic acid (16.8 μ g/ml). 1: Caffeic acid; 2: ABA (4-p-anisamidobutytic acid)

2.1.2 标准曲线与线性范围 取空白血浆 100 μ l,精密加入标准系列溶液的 ABA 对照品溶液 50 μ l 旋涡混匀,配成 ABA 浓度分别为 0.053、0.106、0.424、1.06、4.24、10.6及 21.2 μ g/ml 的标准含药血浆,按1.6.4项下操作,进样分析,记录色谱图,计算 ABA 峰面积与内标峰面积的比值。以血浆中待测物浓度(X)为横坐标,待测物与内标的峰面积比值(Y)为纵坐标,用 1/X 权重进行回归计算 [3],求得回归方程: Y=0.476 8X+0.014 0(r=0.999 4)。结果表明,ABA 在 0.053~21.2 μ g/ml 范围内线性关系良好。

2.1.3 定量限与检测限 按上述条件,以 S/N>10 测得 ABA 在血浆中的定量下限(LLOQ)为 0.053

 $\mu g/ml$ 。经逐级稀释,接 S/N>3 测得 ABA 在血浆中的检测限为 0.009 $\mu g/ml$ 。配制 ABA 浓度为定量下限的标准含药血浆 5 份,进行 HPLC-MS 分析,计算 ABA 面积与内标峰面积的比值,代入随行标准曲线方程求得实测浓度,计算出定量下限的准确度为 89.27%~104.27%,RSD 为 6.50%。

2.1.4 精密度与准确度 制备含 ABA 浓度分别为 0.106、1.06、10.6 μ g/ml 的标准含药血浆各 5 份,按 1.6.4 项下操作,进样分析。并于每天配制浓度为 0.106、1.06、10.6 μ g/ml 血浆样本各 5 份,进样分析,连续 3 d。将 ABA 和内标峰面积的比值代入当天的随行标准曲线求得实测浓度,计算批内和批间精密度。结果批内精密度 RSD<3%、批间精密度 RSD<6%。

准确度以相对回收率表示,制备含有 ABA 浓度 分别为 0.106、1.06、10.6 μg/ml 标准含药血浆各 5 份,按1.6.4项下操作,进样分析,记录色谱峰面积, 计算待测物峰面积和内标峰面积的比值,代入标准 曲线方程,计算实测浓度与加入浓度的比值即为相 对回收率。结果准确度范围为 91.44%~113.62%。 2.1.5 基质效应与提取回收率 分别制备 ABA 浓 度分别为 0.106、1.06、10.6 μg/ml 血浆样本,按 1.6.4项下操作,每个浓度平行操作5份,进样分析 得峰面积作为 Set3; 取空白血浆,按 1.6.4 项下操 作,取上清液后加入 ABA 标准溶液,使之浓度与 Set3 待测理论浓度一致,每个浓度平行操作 5 份,进 样分析得峰面积,作为 Set2;将 ABA 标准溶液用甲 醇稀释,使之与 Set3 待测理论浓度一致,进样分析 得峰面积,重复进样 5次,作为 Set1。基质效应为 Set2/Set1,提取回收率为 Set3/Set2, ABA 及内标咖 啡酸的结果见表 1。由表 1 可得, ABA 的基质效应 范围为 94.82%~97.13%,咖啡酸为 95.91%,基质 效应影响较小,为可接受范围。ABA 提取回收率范 围为 91.84%~106.55%,咖啡酸为 98.78%,回收 率结果良好。

2.1.6 稳定性考察 储备液稳定性:将浓度分别为 $424 \, \mu g/ml$ 和 $112 \, \mu g/ml$ 的 ABA 及内标咖啡酸的标准储备液,置冰箱中($4\, ^{\circ}$ C)放置 $40 \, d$ 后取出,并新配制浓度分别为 $378 \, \mu g/ml$ 和 $80 \, \mu g/ml$ 的 ABA 和内标咖啡酸的标准储备液,分别测定 $2 \,$ 种条件下的储备液,进样量 $1 \, \mu l$,重复进样 $3 \,$ 次,求得峰面积平均值,以原浓度统一校正峰面积后,计算其峰面积的相对偏差 (RE),计算公式: (测得值一真实值)/真实

值×100%,结果 ABA 与内标咖啡酸 RE 分别为4.23%和3.83%,证明储备液稳定性良好。

表 1 基质效应与提取回收率试验结果
Tab 1 Results of matrix effect and
extraction recovery experiments

Compound	Concentration $\rho_{\rm B}/(\mu { m g} \cdot { m ml}^{-1})$	Matrix effect	Extraction recovery
ABA	0.106	94.82	91.84
	1.06	97.13	105.65
	10.6	96.49	106.55
Caffeic acid	16.8	95.91	98.78

ABA: 4-p-anisamidobutytic acid

放置稳定性:制备 ABA 浓度分别为 0.106、1.06、

10.6 μ g/ml 血浆样品各 3 份,在以下 3 种条件测定样品: (1)室温放置 3 h后,再按 1.6.4 项下操作处理; (2)先按 1.6.4 项下操作,再室温放置 24 h; (3)先按 1.6.4 项下操作,再 4 \mathbb{C} 放置 24 h。分别计算待测物峰面积和内标峰面积的比值,代入随行标准曲线计算样品的浓度,计平均值,并计算 RE 及 RSD。

反复冻融及长期冻融稳定性。制备 ABA 浓度分别为 0.106、1.06、10.6 μ g/ml 血浆样品各 3 份,置于一40° 冰箱冰冻后,温室融解,反复冻融 3 次,及冰冻 30 d 后取出,按 1.6.4 项下操作,测定样品浓度,计平均值,并计算 RE 及 RSD。稳定性结果见表 2。由表 2 可见,RE 的范围为一9.46% \sim 13.46%,RSD 均< 15%,表明样品稳定性良好。

表 2 放置及冻融稳定性试验结果

Tab 2 Results of placement and freeze-thaw stability experiments

(%)

	0.106 μ g • ml ⁻¹ ABA		1.06 μg • ml ⁻¹ ABA		10. 6 μg • ml ⁻¹ ABA	
Way of disposal	RE	RSD	RE	RSD	RE	RSD
Before placed	-7.52	6.30	2.82	9.90	1.74	10.52
Room temperature for 3 h	-6.89	4.29	12.03	1.47	8.08	0.60
Room temperature for 24 h	-9.46	5.65	2.14	10.93	1.13	10.01
Refrigeration at 4°C for 24 h	-7.20	4.69	5.58	9.11	4.06	10.05
Before frozen	0.19	4.54	13.18	1.16	9.36	1.06
One freeze-thaw cycle	-6.32	4.60	12.39	1.48	9.05	0.17
Two freeze-thaw cycle	2.69	3.08	13.46	0.58	8.30	2.62
Three freeze-thaw cycle	-7.93	5.75	9.14	1.44	4.80	0.63
Frozen for 30 d	-8.91	0.86	9.64	1.84	6.92	1.04

ABA: 4-p-anisamidobutytic acid; RE: Relative error; RSD: Relative standard deviation

2.1.7 质控 受试者血浆样品的测定在分析方法确证完成之后进行。在每批血浆样品测定的同时建立相应的标准曲线及质控样品,随行标准曲线的配制方法按 2.1.2 项下操作。

测定血浆样品时,质控样品为含 ABA 浓度 0.106、1.06、10.6 $\mu g/ml$ 的标准含药血浆,每批血浆样品的浓度数据由当批随行标准曲线求得。除 3个不在同一分析批的超限值,其余所有分析批质控样品准确度均在 $85\%\sim115\%$ 的范围内。

2.2 药-时曲线及药代动力学参数 受试者口服受试制剂和参比制剂后 ABA 平均血药浓度-时间曲线见图 2。采用 3P97 实用药代动力学统计软件以非房室模型计算药代动力学参数,以梯形法计算 AUC_{0-1} 值,用半对数作图法。由消除相的末端 4 个可测浓度点计算 $t_{1/2}$, t_{max} 和 C_{max} 采用实测值。受试者单次口服受试制剂及参比制剂后的平均药代动力

学参数见表 3。

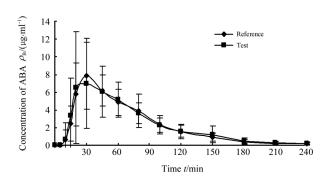


图 2 22 名受试者口服 200 mg 茴拉西坦胶囊后的 平均血药浓度-时间曲线

Fig 2 Mean plasma concentration-time curves after oral administration of 200 mg aniracetam capsules in 22 healthy volunteers

ABA: 4-p-anisamidobutytic acid. n=22, $\bar{x}\pm s$

2.3 生物等效性评价 以 AUC_{0-t} 和 $AUC_{0-\infty}$ 计算,受试制剂的相对生物利用度 F_{0-t} 和 $F_{0-\infty}$ 分别为 $(101.22\pm17.17)\%$ 和 $(101.52\pm16.63)\%$ 。主要药动学参数 C_{max} 、 AUC_{0-t} 、 $AUC_{0-\infty}$ 经对数转换后进行方差分析。结果显示:AUC 具有个体间差异(P<0.0001),制剂间、周期间以及给药顺序间的差异均无统计学意义(P>0.05)。而 C_{max} 制剂间、周期间、给药顺序间以及个体间的差异均无统计学意义 (P>0.05)。双向单侧 t 检验和 $(1-2\alpha)$ 置信区间分析

 $(\alpha=0.05)$ 结果表明,受试制剂与参比制剂为生物等效制剂,其中受试制剂的 AUC $_{\circ\circ}$ 和 AUC $_{\circ\circ}$ 。的 90% 置信区间在参比制剂的 95.54% ~ 108.47% 和 96.03% ~ 108.51%, C_{\max} 在参比制剂的 85.71% ~ 133.32%。非参数检验(Wilcoxon 符号秩检验)结果显示:受试制剂与参比制剂 t_{\max} 差异无统计学意义(P>0.05)。统计分析结果表明,2 种制剂具有生物等效性。

表 3 22 名受试者口服 200 mg 受试制剂或参比制剂后的平均药代动力学参数

Tab 3 Mean pharmacokinetic parameters after oral administration of 200 mg reference or test preparations in 22 healthy volunteers

 $(n=22, \bar{x}\pm s)$

Group	$rac{C_{ ext{max}}}{ ho_{ ext{B}}/(\mu ext{g} \cdot ext{ml}^{-1})}$	$t_{ m max} \ t/{ m min}$	$t_{1/2} \ t/\mathrm{min}$	$\begin{array}{c} \text{AUC}_{0\text{-t}} \\ (\mu \text{g} \bullet \text{ml}^{-1} \bullet \text{min}) \end{array}$	$\begin{array}{c} \mathrm{AUC}_{0\text{-}\infty} \\ (\mu\mathrm{g} \cdot \mathrm{ml}^{-1} \cdot \mathrm{min}) \end{array}$
Test	9.30 ± 5.13	38.41 \pm 17.89	37.21 ± 10.51	555.21 ± 157.10	566.24 ± 158.01
Reference	8.70 ± 3.17	39.09 ± 19.92	38.45 ± 9.24	545.39 ± 97.22	554.71 ± 100.32

3 讨论

茴拉西坦胶囊作为经典的老年痴呆的预防和治疗用药,仿制药研究很多,近几年对于其药代动力学及生物等效性的研究已有不少报道,方法多为HPLC-UV法[4-5],其抗干扰能力差、灵敏度低,得到的药-时曲线不能完整地反映茴拉西坦体内的ADME过程。已报道的HPLC-MS法^[6]色谱条件繁琐,内标不易获得,且方法学验证做得不够全面。本文结合多篇文献报道,摸索出最优的前处理及色谱质谱条件,所建立的HPLC-MS法条件简单、灵敏度高,方法学考察全面,结果良好。

在色谱条件的选择上,选用 3.0 μm 填料的色谱柱,既保证了柱效和分离度,又避免了过高的压力,选择的内标咖啡酸容易获得,试验条件简单适用,可在常规液相上重现。在质谱条件的选择上,对于ABA的离子选择,同时监测其[M+H]⁺和[M+Na]⁺,保证了待测物的最大响应以获得更高的灵敏度。在方法学验证上,考察全面,针对质谱法的特点对 ABA 及内标咖啡酸基质效应进行了考察,并在稳定性试验中加入了对 ABA 及内标储备液稳定性的考察,更加有力地保证了试验结果的准确性。

本试验随机入选健康男性受试者24名,在试验

过程中,受试者依从性良好,给药前后体格检查及实验室检查均未见与药物有关且有临床意义的异常。在第1周期和第2周期,未给药前分别有1名受试者发生晕厥和腹泻结束试验,经临床医生判断均与试验药物无关,其余22名受试者均按方案完成了本次研究。本研究中未出现严重不良事件。临床观察结果表明,健康受试者单次口服200 mg 茴拉西坦胶囊受试制剂和参比制剂的安全性良好。

[参考文献]

- [1] 王红梅,曹玉瑗. 茴拉西坦治疗老年脑器质性记忆障碍的临床观察[J]. 中国实用神经疾病杂志,2009,12:2-3.
- [2] Ogiso T,Iwaki M,Tanino T,Ikeda K,Paku T,Horibe Y,et al. Pharmacokinetics of aniracetam and its metabolites in rats[J]. J Pharm Sci,1998,87:594-598.
- [3] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题 [1]. 药物分析杂志,1996,16:343-346.
- [4] 吴松芝, 伟忠民, 刘 茜, 赵 辉, 李晓萃. 茴拉西坦胶囊人体药 代动力学与生物等效性研究[J]. 南昌大学学报: 医学版, 2010, 50, 20-22.
- [5] 张志涛,赵怀清,李见春. 茴拉西坦胶囊健康人体生物等效性与 药代动力学研究[J]. 淮海医药,2007,25,1-4.
- [6] 谢 平,朱运贵,王 峰,肖轶雯,张毕奎.人血浆中茴拉西坦代谢物的 HPLC-MS测定及药物动力学研究[J].中国医药工业杂志,2006,37:418-420.

[本文编辑] 尹 茶