DOI:10, 3724/SP, J, 1008, 2013, 01155

·研究简报·

2-[(1-取代苯基-1H-1,2,3-三唑-4-基)甲硫基]-5-(3,4,5-三甲氧基苯基)-1,3,4- 二唑化合物的合成及抗真菌活性

曲秀艳1,2,夏东利1,2,李淑翠1*

- 1. 滨州医学院药理学教研室,烟台 264003
- 2. 胜利石油管理局滨南医院门诊药房,滨州 256606

[关键词] 合成; 二唑;抗真菌药

「中图分类号] R 916.693

[文献标志码] B

「文章编号」 0258-879X(2013)10-1155-05

Design, synthesis and antifungal activities of $2-[(1-substituted\ phenyl-1H-1,2,3-triazol-4-yl)\ methylthio]-5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole compounds$

QU Xiu-yan^{1,2}, XIA Dong-li^{1,2}, LI Shu-cui^{1*}

- 1. Department of Pharmacology, Binzhou Medical College, Yantai 264003, Shandong, China
- 2. Department of Pharmacy, Binnan Hospital of Shengli Petroleum Administration Bureau, Binzhou 256606, Shandong, China

[Key words] synthesis; oxadiazoles; antifungal agents

[Acad J Sec Mil Med Univ, 2013, 34(10):1155-1159]

近年来,真菌感染的发病率和病死率呈明显上升趋势,尤其对癌症放疗、化疗患者、器官移植患者以及介入治疗患者更是致命的威胁。究其原因,一方面缘于广谱抗生素、肾上腺皮质激素、抗肿瘤药、免疫抑制剂的滥用,导致菌群失调和机体对真菌的抵抗力降低,致使真菌感染易于发生并难以控制;另一方面,由于真菌与人类细胞同为真核细胞,长期用药后往往对宿主具有相当的毒性,并且随着抗真菌药物的运用,真菌的耐药性也越来越强。真菌感染已成为严重影响人们身体健康的公众问题[1-2]。因此,抗真菌药物的研究日益受到人们的关注。

真菌感染按感染部位可分为浅部真菌病和深部真菌病。浅部真菌病指侵入表皮、毛发和指(趾)甲的真菌病,比较普遍,是一种常见病;深部真菌病指致病性真菌侵犯皮下组织、黏膜和内脏器官所引起的真菌感染性疾病。深部真菌病有病情进展快、诊断难、疗效差、治疗费用高等特点。目前临床上用于治疗深部真菌感染的药物较少,主要有两性霉素 B和氟康唑、伊曲康唑等几个氮唑类药物,但它们都存在一定的缺陷。两性霉素 B的肾毒性较大,氮唑类药物存在抗菌谱窄、耐药性严重两大主要问题[3-4]。因此,临床上迫切需要

新型、广谱、高效、低毒、抗耐药的抗真菌药物。

没食子酸是医药、化工领域重要的中间体。但由于其结构中的羟基易被氧化,在制备药物或化工原料时常成酯或成醚。没食子酸的衍生物具有良好的抗肿瘤、抗炎、抗菌、抗真菌和抗病毒的作用。近年来研究发现,其 1,3,4- 二唑衍生物有很好的抗真菌活性[5-6]。并且有文献报道含有 1,3,4- 二唑结构的衍生物也具有广泛的生物活性,如抗菌、抗真菌、抗肿瘤、抗炎等[7-10]。根据该类化合物已有的抗真菌构效关系研究结果,本研究设计合成了系列化合物:保留了 3,4,5-三甲氧基苯基,1,3,4- 二唑活性结构基础,引入1-取代苯基-1,2,3-三氮唑侧链,设计合成了一类化合物。而 1,2,3-三氮唑和 1,2,4-三氮唑常作为氮唑类抗真菌药物研究的重要基团[11-15],通过引入该基团,希望能得到一类具有较好活性的化合物。目标化合物 8a~8t 的合成路线见图 1。

1 仪器和试剂

化合物的熔点用 XT-5 熔点仪(上海济成分析仪器有限公司)测定,温度未经校正;核磁共振谱用 Broker Spectrospin AC-P 300 型核磁共振仪测定,核磁共振谱用

「收稿日期] 2013-04-01 「接受日期] 2013-07-26

[作者简介] 曲秀艳,主管药师. E-mail: quxiuyan2012@163.com

^{*}通信作者(Corresponding author). Tel: 0535-6913216, E-mail: lishucui929@gmail.com

CDCl₃(百灵威科技有限公司)为溶剂,TMS为内标;LC-MS用 Agilent 1100 系列液相质谱联用仪;旋转蒸发仪用R-1001-VN 旋转蒸发仪(郑州长城仪器有限公司);真空

泵用 SHB-Ⅲ型台式循环水式多用真空泵(郑州长城仪器有限公司);薄层色谱硅胶板和柱层析硅胶(烟台江友硅胶开发有限公司);所有试剂均为市售分析纯或化学纯。

图 1 目标化合物的合成路线

反应条件: a. 二氯亚砜,回流 3 h,收率 93.5%; b. 甲醇,二氯甲烷,三乙胺,0℃到室温 5 h,收率 78.5%; c. 水合肼,甲醇,回流 5 h,收率 82.0%; d. 二硫化碳,氢氧化钾,乙醇,回流 6 h,收率 63.5%; e. 5%盐酸水溶液,0℃2 h,收率 57.5%; f. 溴丙炔,铟,3%氢氧化钠水溶液,乙醇,室温 5 h,收率 64.3%; g. 取代叠氮苯,N,N-二甲基甲酰胺,五水硫酸铜,抗坏血酸钠,室温过夜,收率 60.8%~74.7%

2 方法和结果

2.1 3,4,5-三甲氧基苯甲酰氯的制备 称取 3,4,5-三甲氧基苯甲酸(1) 3.4 g (20 mmol) 加入 50 mL 圆底烧瓶中,量取氯化亚砜 30 mL 加入,回流反应 3 h,蒸除过量的氯化亚砜,得淡黄色油状物中间体 3,4,5-三甲氧基苯甲酰氯(2)4.3 g,收率 93.5%。

2.2 3,4,5-三甲氧基苯甲酸甲酯(3)的制备 将3,4,5-三甲氧基苯甲酰氯(2)4.3 g 溶于 30 mL 二氯甲烷中,冰浴下缓慢滴人 20 mL 甲醇溶液中,并加入三乙胺 3 mL,滴加完毕,室温反应 5 h,蒸除溶剂得白色粉末3,4,5-三甲氧基苯甲酸甲酯(3)3.3 g,熔点 80.2~82.5 $^{\circ}$ C(文献[16]值为 79~80 $^{\circ}$ C),收率 78.5 $^{\circ}$ 8.

2.3 3,4,5-三甲氧基苯甲酰肼(4)的制备 将 3,4,5-三甲氧基苯甲酸甲酯(3) 3.3 g (15 mmol) 溶于 30 mL 甲醇中,加入 80%水合肼 3.2 mL (45 mmol),加热回流反应 5 h,蒸干得白色固体 3,4,5-三甲氧基苯甲酰肼(4) 2.8 g,熔点 152.3~153.8 $^{\circ}$ (文献[16] 值为 152~154 $^{\circ}$),收率 82.0%。

2.4 3,4,5-三甲氧基苯甲酰肼二硫代酸钾(5)的制备 将3,4,5-三甲氧基苯甲酰肼(4)2.8 g(12 mmol), 乙醇 30 mL、氢氧化钾 0.8 g(15 mmol)加入 50 mL 三 颈瓶中搅拌溶解,控制温度 $25\sim30^{\circ}$ 、缓慢滴加二硫化碳 1.1 g(15 mmol),升温回流 6 h,反应毕,冷却至室温,抽滤,用甲醇洗涤,用甲醇重结晶得黄色固体化合物3,4,5-三甲氧基苯甲酰肼二硫代酸钾(5) 2.6 g,熔点 $210.5\sim212.7^{\circ}$ (文献[16] 值为 $214\sim216^{\circ}$),收率 63.5%。

2.5 2-巯基-5-(3,4,5-三甲氧基苯基)-1,3,4-二唑 (6)的制备 将中间体 3,4,5-三甲氧基苯甲酰肼二硫 代酸钾(5) 2.6 g (8 mmol)加入盛有 5%盐酸溶液的圆底烧瓶中,冰浴下搅拌反应 2 h,过滤析出的固体,滤饼用 90% 乙醇重结晶得白色固体 2-巯基-5-(3,4,5-三甲氧基苯基)-1,3,4-二唑(6) 1.2 g,熔点 186.2~188.7 $^{\circ}$ (文献[5]值为 186~188 $^{\circ}$),收率 57.5%。

2.6 2-炔丙硫基-5-(3,4,5-三甲氧基苯基)-1,3,4-二唑(7)的制备 将中间体 2-巯基-5-(3,4,5-三甲氧基苯基)-1,3,4- 二唑(6) 1.2 g (4 mmol)加入 50 mL 圆 底烧瓶中,依次加入乙醇 25 mL,3%氢氧化钠水溶液 3 mL,溴丙炔 0.6 g (5 mmol),再加入催化量的铟,室温搅拌反应 5 h,有白色固体生成,过滤,滤饼用 5%碳酸氢钠水溶液洗,然后蒸馏水洗 2次,得白色固体化合物 2-炔丙基硫醚-5-(3,4,5-三甲氧基苯基)-1,3,4- 二唑 (7) 0.79 g,熔点 176.5~179.2 $^{\circ}$,收率 64.3%。

2.7 目标化合物 2-[(1-苯基-1H-1,2,3-三唑-4-基)甲硫基]-5-(3,4,5-三甲氧基苯基)-1,3,4- 二唑(8a)的制备 将中间体 2-炔丙硫基-5-(3,4,5-三甲氧基苯基)-1,3,4- 二唑(7) 100.0 mg(0.3 mmol),叠氮苯47.6 mg(0.4 mmol) 加入 25 mL 圆底烧瓶中,量取

DMF 15 mL 加入,另取五水合硫酸铜与抗坏血酸钠少许加2 mL水溶解后,迅速加入反应体系中,反应过夜。反应毕,反应液加入 2 0 mL氨水,混匀,加20 mL乙酸乙酯萃取,保留酯层,水层用 15 mL×2 乙酸乙酯萃取,合并酯层。酯层用 20 mL×2 稀盐酸酸化,合并水层,加入碳酸钠固体至溶液中有少量碳酸钠固体不再溶解。20 mL×3 乙酸乙酯萃取,无水硫酸钠干燥,过滤,浓缩得白色固体目标化合物($\mathbf{8a}$) 78.3 mg,熔点 $182.5\sim184.7$ °, 收率 61.4%。

其他目标化合物均按此法合成,其产率、熔点、LC-MS和¹ HNMR 数据见表 1。

表 1 目标化合物的产率、熔点、质谱及核磁共振氢谱数据

化合物	收率(%)	熔点 θ/℃	质谱 [M+H] ⁺	核磁共振氢谱 (CDCl ₃)		
	61.4	182.5~184.7	426.2	8.09 (1H, s,triazole-H),7.32~7.58 (5H,m,Ar),7.15 (2H,s,Ar-H),3.92 (3H,s,OCH ₃), 3.86 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃)4.82 (2H,s,SCH ₂),		
8b	64.5	181.4~183.0	444.2	8.03 (1H,s,triazole-H),7.36~7.60 (4H,m,Ar),7.18 (2H,s,Ar-H),4.79 (2H,s,SCH ₂), 3.91 (3H,s,OCH ₃),3.85 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃)		
8c	63.6	197.5~199.3	444.2	8.05 (1H,s,triazole-H),7.32~7.59 (4H,m,Ar),7.14 (2H,s,Ar-H),4.75 (2H,s,SCH ₂), 3.89 (3H,s,OCH ₃),3.87 (3H,s,OCH ₃),3.84 (3H,s,OCH ₃)		
8d	70.5	189.2~191.5	444.1	7.98 (1H,s,triazole-H),7.35~7.61 (4H,m,Ar),7.15 (2H,s,Ar-H),4.83 (2H,s,SCH ₂), 3.91 (3H,s,OCH ₃),3.86 (3H,s,OCH ₃),3.82 (3H,s,OCH ₃)		
8e	68.2	204.8~206.5	460.1	8.02 (1H,s,triazole-H),7.41~7.64 (4H,m,Ar),7.08 (1H,s,Ar-H),7.06 (1H,s,Ar-H), 4.85 (2H,s,SCH ₂),3.90 (3H,s,OCH ₃),3.87 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃)		
8f	72.8	190.2~192.6	460.1	7.97 (1H,s,triazole-H),7.37~7.63 (4H,m,Ar),7.17 (2H,s,Ar-H),4.81 (2H,s,SCH ₂), 3.88 (6H,s,OCH ₃),3.83 (3H,s,OCH ₃)		
8g	66.5	191.1~193.4	460.1	7. 98 (1H,s,triazole-H),7. 40~7. 65 (4H,m,Ar),7. 20 (2H,s,Ar-H),4. 77 (2H,s,SCH ₂), 3. 93 (3H,s,OCH ₃),3. 88 (3H,s,OCH ₃),3. 84 (3H,s,OCH ₃)		
8h	67.4	188.2~190.7	504.3	8.02 (1H,s,triazole-H),7.37~7.56 (4H,m,Ar),7.15 (1H,s,Ar-H),7.10 (1H,s,Ar-H), 4.75 (2H,s,SCH ₂),3.88 (3H,s,OCH ₃),3.85 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃)		
8i	68.5	193.5~195.9	504.3	7.97 (1H,s,triazole-H),7.41~7.63 (4H,m,Ar),7.17 (2H,s,Ar-H),4.63 (2H,s,SCH ₂), 3.92 (3H,s,OCH ₃),3.89 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃)		
8j	65.2	207.2~209.3	504.2	7. 97 (1H,s,triazole-H),7. 38~7. 62 (4H,m,Ar),7. 20 (2H,s,Ar-H),4. 79 (2H,s,SCH ₂), 3. 91 (3H,s,OCH ₃),3. 87 (3H,s,OCH ₃),3. 83 (3H,s,OCH ₃)		
8k	74.0	195.3~197.5	440.2	7. 93 (1H,s,triazole-H),7. 35~7. 55 (4H,m,Ar),7. 16 (2H,s,Ar-H),4. 74 (2H,s,SCH ₂), 3. 89 (3H,s,OCH ₃),3. 86 (3H,s,OCH ₃),3. 83 (3H,s,OCH ₃),2. 42 (3H,s,CH ₃)		
81	64.5	202.1~203.8	440.2	7.95 (1H,s,triazole-H),7.36~7.57 (4H,m,Ar),7.18 (2H,s,Ar-H),4.75 (2H,s,SCH ₂), 3.91 (3H,s,OCH ₃),3.86 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃),2.44 (3H,s,CH ₃)		
8m	69.4	205.2~207.7	440.2	7. 98 (1H,s,triazole-H),7. 39~7. 57 (4H,m,Ar),7. 17 (2H,s,Ar-H),4. 73 (2H,s,SCH ₂), 3. 87 (6H,s,OCH ₃),3. 83 (3H,s,OCH ₃),2. 51 (3H,s,CH ₃)		
8n	71.5	191.3~193.1	456.2	8.02 (1H,s,triazole-H),7.40~7.59 (4H,m,Ar),7.20 (2H,s,Ar-H),4.77 (2H,s,SCH ₂), 3.90 (3H,s,OCH ₃),3.86 (3H,s,OCH ₃),3.83 (6H,s,OCH ₃)		
80	68.5	171.5~173.4	456.2	7.96 (1H,s,triazole-H),7.42~7.58 (4H,m,Ar),7.18 (2H,s,Ar-H),4.80 (2H,s,SCH ₂), 3.91 (3H,s,OCH ₃),3.87 (3H,s,OCH ₃),3.83 (6H,s,OCH ₃)		
8p	60.8	186.7~188.6	456.1	7. 98 (1H,s,triazole-H),7. 39~7. 60 (4H,m,Ar),7. 18 (2H,s,Ar-H),4. 75 (2H,s,SCH ₂), 3. 89 (3H,s,OCH ₃),3. 86 (3H,s,OCH ₃),3. 83 (6H,s,OCH ₃)		
8q	62.5	187.5∼189.1	471.1	8.01 (1H,s,triazole-H),7.38~7.67 (4H,m,Ar),7.21 (2H,s,Ar-H),4.86 (2H,s,SCH ₂), 3.89 (3H,s,OCH ₃),3.86 (3H,s,OCH ₃),3.83 (3H,s,OCH ₃)		
8r	66.3	198.2~200.1	471.2	8. 04 (1H,s,triazole-H),7. 35~7.65 (4H,m,Ar),7.18 (2H,s,Ar-H),4.85 (2H,s,SCH ₂), 3. 89 (6H,s,OCH ₃),3.87 (3H,s,OCH ₃),3.84 (3H,s,OCH ₃)		
8s	61.8	205.4~207.8	471.1	7. 99 (1H,s,triazole-H),7. 37~7. 64 (4H,m,Ar),7. 20 (2H,s,Ar-H),4. 88 (2H,s,SCH ₂), 3. 91 (6H,s,OCH ₃),3. 86 (3H,s,OCH ₃),3. 83 (3H,s,OCH ₃)		
8t	74.7	196.6~198.2	451.1	8. 02 (1H,s,triazole-H),7. 38~7. 62 (4H,m,Ar),7. 17 (1H,s,Ar-H),7. 14 (1H,s,Ar-H), 4. 86 (2H,s,SCH ₂),3. 89 (3H,s,OCH ₃),3. 87 (3H,s,OCH ₃),3. 84 (3H,s,OCH ₃)		

2.8 抗真菌活性实验 本研究选用 6 种常见的人体 致病真菌菌株为试验菌株,其中 2 种为 ATCC 标准株, 其余 4 种为临床株。6 种真菌分别为白念珠菌(Candida albicans, ATCC76615)、新生隐球菌(Cryptococcus neoformans, ATCC32609)、热带念珠菌(Candida tropicalis)、近平滑念珠菌(Candida parapsilosis)、红色毛 癣菌(Trichophyton rubrum)、克鲁氏假丝酵母(Candida krusei)。ATCC 标准株和临床株由山东大学齐鲁医院提供,临床株分别采自不同科室临床样本,并经形态学和生化学鉴定。对照药选用伊曲康唑、氟康唑和酮康唑。采用美国国家临床实验室标准委员会(NCCLS)推荐的标准化抗真菌敏感性实验方法[17]测试体外抗真菌活性,以目标化合物抑制所选真菌 80%生长的浓度(MIC₈₀)作为判断终点。结果见表 2。

表 2 目标化合物的体外抗真菌活性[MIC₈₀]

 $c_{\rm B}/({\rm nmol} \cdot {\rm mL}^{-1})$

化合物	白念珠菌	新生隐球菌	热带念珠菌	近平滑念珠菌	红色毛癣菌	克鲁氏假丝酵母
8a	0.29	1.17	1.17	0.59	18.77	4.70
8b	1.13	2.25	4.51	2.25	4.51	4.51
8c	1.12	9.03	4.51	1.12	4.51	0.56
8d	2.26	4.51	4.51	4.51	4.51	4.51
8e	0.27	4.36	17.43	0.54	4.36	4.36
8f	1.09	4.36	4.36	1.09	0.54	0.54
8g	1.09	1.09	2.18	1.09	4.36	1.09
8h	1.99	1.00	3.98	3.98	3.98	7.95
8i	0.50	7.95	7.95	7.95	0.50	15.90
8j	1.00	15.90	7.95	1.99	1.00	7.95
8k	0.28	0.28	4.55	1.14	9.10	0.57
81	0.28	1.14	2.27	2.27	4.55	4.55
8m	0.14	0.28	2.27	2.27	1.14	2.27
8n	0.27	0.27	2.20	1.10	0.27	1.10
80	0.14	0.27	8.79	2.20	4.40	2.20
8p	0.27	1.10	4.40	0.27	4.40	4.40
8 q	2.13	8.51	17.02	8.51	8.51	8.51
8r	8.51	4.26	34.04	8.51	1.06	8.51
8s	17.02	4.26	68.08	8.51	8.51	4.26
8t	2.22	8.89	35.56	35.56	8.88	4.44
伊曲康唑	0.09	0.18	0.18	0.71	0.18	0.18
氟康唑	0.41	0.41	1.64	3. 27	0.82	0.82
酮康唑	0.47	0.47	0.47	0.94	1.88	1.88

3 讨论

初步体外抗真菌活性测试结果显示,所合成的目标化合物对所测菌株均具有一定的体外抗真菌活性。其中化合物 8m、8o 对白色念珠菌的 MIC_{80} 值均为 0.14 nmol/mL,约为氟康唑或酮康唑的 3 倍;而化合物 8a、8e、8k、8l、8n 和 8p 对白色念珠菌的抑制活性也较氟康唑或酮康唑强;化合物 8k、8m 、8n 、8o 对新生隐球菌的 MIC_{80} 值为 $0.27\sim0.28$ nmol/mL,活性略低于伊曲康唑(MIC_{80} 0.18 nmol/mL);化合物 8p 对近平滑念珠菌的抑制活性(MIC_{80} 0.27 nmol/mL)较对照药伊曲康唑、氟康唑或酮康唑都强。而化合物 $8q\sim8t$ 的活性比其他化合物活性差。分析目标化合物的结构与抑菌活

性结果,可以初步得到以下构效关系: 2-位苯环上连有较大的吸电子取代基,如溴原子、硝基、氰基,不利于化合物活性的提高。而 2-位苯环上连有较小基团,尤其是供电子取代基,如甲基、甲氧基,则有利于化合物活性的提高,可能是供电子取代基增强了苯环的电子云密度,有利于化合物与靶酶的结合。由于化合物数量有限,更深入的构效关系探讨有待于进一步的研究。

4 利益冲突

所有作者声明本文不涉及任何利益冲突。

[参考文献]

[1] Nucci M, Marr K A. Emerging fungal diseases[J]. Clin

- Infect Dis, 2005, 41:521-526.
- [2] Boschman C R, Bodnar U R, Tornatore M A, Obias A A, Noskin G A, Englund K, et al. Thirteen-year evolution of azole resistance in yeast isolates and prevalence of resistant strains carried by cancer patient at a large medical center [J]. Antimicrob Agents Chemother, 1998, 42:734-738.
- [3] Gallis H A, Drew R H, Pickard W W. Amphotericin B: 30 years of clinical experience[J]. Rev Infect Dis, 1990, 12:308-329.
- [4] Gallis H A, Amphotercin B; a commentary on its role as an antifungal agent and as a comparative agent in clinical trials[J]. Clin Infect Dis,1996,22;S145-S147.
- [5] Chen C J, Song B A, Yang S, Xu G F, Bhadury P S, Jin L H, et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxy-phenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives[J]. Bioorg Med Chem, 2007, 15:3981-3989.
- [6] Sangshetti J N, Chabukswar A R, Shinde D B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents[J]. Bioorg Med Chem Lett, 2011, 21:444-448.
- [7] Joshi S D, Vagdevi H M, Vaidya V P, Gadaginamath G S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial and antitubercular agents[J]. Eur J Med Chem, 2008, 43:1989-1996.
- [8] Li Y, Liu J, Zhang H, Yang X, Liu Z. Stereoselective synthesis and fungicidal activities of (E)-alpha-(methoxyimino) -benzeneacetate derivatives containing 1, 3,4-oxadiazole ring[J]. Bioorg Med Chem Lett, 2006, 16:2278-2282.
- [9] 张成仁,王 柳,葛燕丽,巨修炼. 唑、苯并 唑及 1, 3,4- 二唑硫醚的合成及抗肿瘤活性研究[J]. 有机化

- 学,2007,27:1432-1437.
- [10] Padmanabhan S, Lavin R C, Durant G J. Asymmetric synthesis of a neuroprotective and orally active N-methyl-d-aspartate receptor ion-channel blocker, CNS 5788 [J]. Tetrahedr-A,2000,11:3455-3457.
- [11] Wang Y, Damu G L, Lv J S, Geng R X, Yang D C, Zhou C H. Design, synthesis and evaluation of clinafloxacin triazole hybrids as a new type of antibacterial and antifungal agents [J]. Bioorg Med Chem Lett, 2012, 22: 5363-5366.
- [12] Yu S, Chai X, Hu H, Yan Y, Guan Z, Zou Y, et al. Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase [J]. Eur J Med Chem, 2010, 45;4435-4445.
- [13] Sangshetti J N, Shinde D B. Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1, 2, 3-triazol-4-yl)-5-substituted phenyl-1, 2, 4-oxadiazoles as antifungal agents[J]. Eur J Med Chem, 2011, 46:1040-1044.
- [14] Aher N G, Pore V S, Mishra N N, Kumar A, Shukla P K, Sharma A, et al. Synthesis and antifungal activity of 1, 2, 3-triazole containing fluconazole analogues [J]. Bioorg Med Chem Lett, 2009, 19:759-763.
- [15] Aperis G, Mylonakis E. New triazole antifungal agents: pharmacology, spectrum, clinical efficacy and limitations [J]. Expert Opin Investig Drugs, 2006, 15:579-602.
- [16] 宋宝安,陈才俊,杨 松,金林红,薛 伟,张素梅,等. 2-取代硫醚-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑类化合物的合成、结构与体外抗癌活性[J]. 化学学报,2005,63:1720-1726.
- [17] National Committee for Clinical Laboratory Standards.

 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved standard. Document M27-A2[S]. 2nd edit. PA: Wayne, Pennsylvania 19087-1898, USA, 2002

[本文编辑] 尹 茶