DOI: 10, 3724/SP, J, 1008, 2011, 01019

• 研究快报 •

新型绿色室温离子液体催化合成 monastrol 及其衍生物

袁文琳1,夏天一1,沈颂章2,王小燕2,何邦平2,孙青䶮3*

- 1. 第二军医大学研究生管理大队药学队,上海 200433
- 2. 第二军医大学药学院实验教学中心,上海 200433
- 3. 第二军医大学药学院有机化学教研室,上海 200433

「摘要〕 探索操作简便的 monastrol 及其衍生物的绿色合成方法。方法 以(取代)苯甲醛、乙酰乙酸乙酯和硫 脲(或尿素)作为起始原料,在微波加热、无溶剂条件下,采用自行设计的绿色室温离子液体 1-丁基-3-甲基咪唑-L-樟脑磺酸盐 催化 Biginelli 反应合成 monastrol 及其衍生物。 结果 该离子液体在微波加热、无溶剂条件下可催化 Biginelli 反应合成 monastrol 及其衍生物,且操作过程简单、反应时间短、环境友好。 结论 以新型绿色室温离子液体 1-丁基-3-甲基咪唑-L-樟 脑磺酸盐作为催化剂,经微波、无溶剂 Biginelli 反应合成 monastrol 及其衍生物是一种方法简单、操作方便、反应温和的绿色合 成方法。

[关键词] 室温离子液体;monastrol;Biginelli 反应;1-丁基-3-甲基咪唑-L-樟脑磺酸盐;微波

[中图分类号] R 916.41 [文章编号] 0258-879X(2011)09-1019-04 [文献标志码] A

A new green room temperature ionic liquid catalyzes synthesis of monastrol and its derivatives through Biginelli reaction

YUAN Wen-lin¹, XIA Tian-yi¹, SHEN Song-zhang², WANG Xiao-yan², HE Bang-ping², SUN Qing-yan³*

- 1. Pharmacy Team, School of Graduate Students, Second Military Medical University, Shanghai 200433, China
- 2. Center for Laboratory Teaching, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- 3. Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China

[Abstract] Objective To explore an easily-controllable, environmentally-friendly method for synthesizing monastrol and its derivatives. Methods Monastrol and its derivatives were synthesized using (substituted) benzaldehyde, ethyl acetoacetate and thiourea (or urea) as the material through a Biginelli reaction catalyzed by green room temperature ionic liquid 1-butyl-3methylimidazolium-L-camphorsulfonate under microwave irradiation without solvent. Results The green room temperature ionic liquid 1-butyl-3-methylimidazolium-L-camphorsulfonate catalyzed Biginelli reaction in obtaining the title compound under microwave irradiation without solvent. The process was easy to operate, time saving and environmentally-friendly. Conclusion Microwave-accelerated solvent-free Biginelli reaction using green room temperature ionic liquid 1-butyl-3-methylimidazolium-Lcamphorsulfonate as catalyst is a convenient and environmentally-friendly method for synthesizing monastrol and its derivatives.

Key words room temperature ionic liquids; monastrol; Biginelli reaction; 1-butyl-3-methylimidazolium-Lcamphorsulfonate; microwaves

[Acad J Sec Mil Med Univ, 2011, 32(9):1019-1022]

3,4-二氢嘧啶-2(1H)-酮类化合物在抗肿瘤、抗 病毒、抗菌、抗氧化等领域具有重要的药理活性,是 近年来有机杂环化合物的合成热点之一[1-3]。具有 该基本母核结构的微管纺锤体驱动蛋白抑制剂 monastrol(单星素)^[4]是近年来发现的一个新型抗肿 瘤先导化合物,它的特点是不影响微管稳定性及避 免产生神经毒性,相关研究受到广泛关注[5]。3,4-二氢嘧啶-2(1H)-酮类结构可通过 Biginelli 反应构 建,该反应操作简单,但反应时间长(18 h)且收率较 低(20%~50%)[6]。对 Biginelli 反应的改进,主要 通过新型催化剂[7]、微波[8]、超声[9]等绿色合成新技 术的引入来缩短反应时间,提高反应收率。彭家建

[收稿日期] 2011-05-29

[接受日期] 2011-06-23

[基金项目] 第二军医大学大学生创新能力培养研究课题 (MS2010043, ZD2009001). Supported by the Foundation for Cultivating Undergraduate Innovative Ability of Second Military Medical University (MS2010043, ZD2009001).

「作者简介」 袁文琳,第二军医大学 2008 级药学专业本科学员, E-mail: vuanwenlinn@163.com

^{*} 通信作者(Corresponding author). Tel: 021-81871228, E-mail: sqy_2000@163.com

等[10] 采用室温离子液体 1-丁基-3-甲基咪唑氟硼酸盐(BMImBF₄)和氟磷酸盐(BMImPF₆)催化合成了3,4-二氢嘧啶-2(1H)-酮类衍生物。2003年,Swatloski等[11]研究表明经典离子液体组成中的氟离子部分可能对环境造成不良影响。因此寻找新型绿色离子液体催化 Biginelli 反应合成3,4-二氢嘧啶-2(1H)-酮类化合物的研究日益受到重视。L-樟脑磺酸作为呼吸循环衰竭抑制剂在临床中得到广泛应用,但未见其用于室温离子液体研究的报道。本研究中,我们将 L-樟脑磺酸引入室温离子液体的阴离子部分,在微波、无溶剂条件下,以自行设计合成的新型绿色室温离子液体1-丁基-3-甲基咪唑-L-樟脑磺酸盐作为催化剂合成了一系列 monastrol 结构类似物。

1 试剂和仪器

(取代)苯甲醛、乙酰乙酸乙酯、硫脲、尿素、L-樟脑磺酸、硝酸银、乙酸乙酯、柱层析用硅胶(200~300目)和乙醇均购自国药集团化学试剂有限公司,

均为分析纯;1-丁基-3-甲基咪唑氯盐为实验室自制; 去离子水。

MAS-I普及型常压微波辅助合成反应仪(上海新仪微波化学科技有限公司);Bruker DPX-300型核磁共振仪;烘箱;WRS-1B数字熔点测定仪(上海天呈科技有限公司)。

2 方法和结果

2.1 离子液体 1-丁基-3-甲基咪唑-L-樟脑磺酸盐的合成 取 3.5 g (20 mmol) 1-丁基-3-甲基咪唑氯盐^[12]加入 500 ml 三颈瓶中,加 50 ml 无水乙醇使溶解,搅拌下再加入 6.8 g (20 mmol) L-樟脑磺酸银的无水乙醇溶液 200 ml,回流反应 2 h。趁热过滤除去生成的 AgCl,滤液浓缩得油状物(6.1 g)即为离子液体 1-丁基-3-甲基咪唑-L-樟脑磺酸盐,收率为 82%,无需进一步纯化,备用。

2.2 Monastrol 及其衍生物的绿色合成 目标化合物合成路线如图 1。

图 1 目标化合物的合成路线

Fig 1 Synthetic route of target compounds

MW: Microwave

合成步骤(以 monastrol 为例): 在 25 ml 茄形瓶中加入间羟基苯甲醛 0.61 g(5 mmol)、乙酰乙酸乙酯 0.65 g(5 mmol)、硫脲 0.40 g(5.3 mmol)、离子液体 1-丁基-3-甲基咪唑-L-樟脑磺酸盐催化剂 0.19 g(0.51 mmol),微波加热反应,功率 500 W,控制反应温度 85~90℃,反应时间 120 min。待反应完毕后,静置冷却得棕黄色黏稠状液体,向体系中加入 20 ml 水,50 ml 乙酸乙酯萃取,水洗(10 ml×3次),无水硫酸钠干燥。过滤,滤液浓缩得粗品。将粗品用柱层析纯化,依次使用石油醚与乙酸乙酯体积比为 5:1 和 3:1 的两种洗脱剂梯度洗脱。浓缩洗脱液,加入少量无水乙醇,放置 48 h 后,无水乙醚洗涤析出的淡黄色固体经干燥得淡黄色粉末 1.02 g,收率为 70%。 m. p. 184.7~185.3℃(文献值 185~185.9℃[13])。产物经 TLC 检测,与 monas-

trol 对照样品的 Rf 值一致。1 HNMR(300 MHz, DMSO-d₆): 10. 29(1H, s, OH); 9. 59(1H, s, NH); 9. 43(1H, s, NH); 7. 13-7. 08(1H, t, Ar-H); 6. 64-6. 62(3H, d, J=6.0 Hz, Ar-H); 5. 08-5. 05(1H, d, J=3.9 Hz, CH); 4. 04-3. 97(2H, q, -OCH₂-); 1. 98(3H, s, -CH₃); 1. 16-1. 09(3H, t, -CH₃); IR(KBr, cm⁻¹): 3 310, 3 186, 3 117, 2 983, 1 667, 1 590, 1 576, 1 473, 1 446, 1 390, 1 371, 1 339, 1 287, 1 194, 1 152, 1 115, 788, 764, 701, 661; MS(ESI) m/z: 293. 0[M+1]。 其他衍生物的反应步骤与此相同。所得数据见表1。

3 讨论

以(取代)苯甲醛、乙酰乙酸乙酯和硫脲(或尿素)作为起始原料,在无溶剂和微波加热条件下,采

用新型绿色室温离子液体 1-丁基-3-甲基咪唑-L-樟脑磺酸盐作为催化剂进行实验研究,结果表明,在初步优化的条件下,即无溶剂、85~90℃微波加热反应,仅加入少量离子液体催化反应即可顺利进行,反应时间缩短至 1~2 h,收率提高到 70%以上,证明1-丁基-3-甲基咪唑-L-樟脑磺酸盐能够有效地催化Biginelli 反应合成 monastrol 及其衍生物。另外,实

验过程中,在没有离子液体催化时,Biginelli 反应不发生;反应温度低于 80℃时,产物收率偏低,若超过 95℃会有较多副反应发生,产物杂质过多、不易纯化;对于反应产物的纯化,一般需采用柱层析分离的方法,仅有少数采用简单的乙醇重结晶操作即可得到纯净的目标化合物。

表 1 目标化合物的熔点、收率及波谱数据

Tab 1 Physical and spectral data of target compounds

Compd.	m. p. $\theta/^{\circ}$ C	Yield (%)	¹ HNMR,IR and MS
1a	205. 6-206. 6	85	${}^{1}\text{HNMR}(300 \text{ MHz,DMSO-}d_{6}); 10.32(1\text{H,s,NH}); 9.64(1\text{H,s,NH}); 7.37-7.19(5\text{H,m,Ar-H}); \\ 5.16-5.15(1\text{H,d,}J=3.9 \text{ Hz,CH}); 4.03-3.96(2\text{H,q,-OCH}_{2}-); 2.28(3\text{H,s,-CH}_{3}); 1.11-1.02(3\text{H,t,-CH}_{3}); \text{IR}(\text{KBr,cm}^{-1}); 3.502, 3.329, 3.174, 3.105, 2.936, 1.671, 1.574, 1.467, 1.370, 1.327, 1.263, 1.196, 1.177, 1.118, 761, 723, 692, 652; MS(ESI) m/z; 277.1 [M+1]$
2a	206. 4-206. 6	82	$^{1} HNMR(300 MHz,DMSO-d_{6}); 7.\ 34-7.\ 27(5H,m,Ar-H); 5.\ 45-5.\ 44(1H,d,J=2.\ 7\ Hz,NH); 5.\ 42(1H,s,CH); 4.\ 12-4.\ 05(2H,q,-OCH_{2}-); 2.\ 37(3H,s,-CH_{3}); 1.\ 20-1.\ 15(3H,t,-CH_{3}); 1R \\ (KBr,cm^{-1}); 3\ 244,3\ 115,2\ 978,2\ 938,1\ 725,1\ 701,1\ 649,1\ 464,1\ 420,1\ 221,1\ 109,1\ 027,781,781,898; MS(ESI)m/z; 262.\ 3[M+1]$
1b	184. 7-185. 3	70	$^{1} HNMR(300 \text{ MHz,DMSO-}d_{6}); 10.\ 29(1H,s,-OH); 9.\ 59(1H,s,NH); 9.\ 43(1H,s,NH); 7.\ 13-7.\ 08(1H,t,Ar-H); 6.\ 64-6.\ 62(3H,d,J=6.\ 0\ Hz,Ar-H); 5.\ 08-5.\ 05(1H,d,J=3.\ 9\ Hz,CH); 4.\ 04-3.\ 97(2H,q,-OCH_{2}-); 1.\ 98(3H,s,-CH_{3}); 1.\ 16-1.\ 09(3H,t,-CH_{3}); IR(KBr,cm^{-1}); 3\ 310, 3\ 186, 3\ 117, 2\ 983, 1\ 667, 1\ 590, 1\ 576, 1\ 473, 1\ 446, 1\ 390, 1\ 371, 1\ 339, 1\ 287, 1\ 194, 1\ 152, 1\ 115, 788, 764, 701, 661; MS(ESI) m/z; 293.\ 0[M+1]$
2ь	183.0-184.1	73	¹ HNMR(300 MHz, DMSO-d ₆); 9. 34(1H, s, -OH); 9. 13(1H, s, NH); 7. 66-7. 65(1H, s, NH); 7. 11-7. 05(1H, t, Ar-H); 6. 66-6. 59(3H, m, Ar-H); 5. 05-5. 04(1H, d, J = 3. 3 Hz, CH); 4. 02-3. 95 (2H, q, -OCH ₂ -); 1. 98(3H, s, -CH ₃); 1. 14-1. 08(3H, t, -CH ₃); IR(KBr, cm ⁻¹); 3 514, 3 353, 3 244, 3 121, 2 979, 1 725, 1 676, 1 644, 1 600, 1 456, 1 420, 1 384, 1 315, 1 296, 1 223, 1 092, 777, 704, 462; MS(ESI)m/z; 277. 1[M+1]
1 c	193.6-194.0	77	$^{1} HNMR(300 \text{ MHz,CDCl}_{3}); 7.73(1H,s,NH); 7.49-7.46(2H,d,J=9.0 \text{ Hz,Ar-H}); 7.20-7.17(2H,q,Ar-H); 5.39-5.38(1H,d,J=3.0 \text{ Hz,CH}); 4.15-4.08(2H,q,-OCH_{2}-); 2.37(3H,s,-CH_{3}); 1.22-1.18(3H,t,-CH_{3}); IR(KBr,cm^{-1}); 3.327,3173,3102,2981,2935,2899,1670, 1572,1464,1386,1371,1334,1295,1281,1250,1196,1176,1120,1030,1010,872,849,802,743,595,571,503; MS(ESI)m/z; 371.0 [M+1]$
2c	217. 8-218. 2	82	¹ HNMR(300 MHz,CDCl ₃); 7. 62(1H,s,NH); 7. 46-7. 44(2H,d, J =6. 0 Hz, Ar-H); 7. 29-7. 19 (2H,q,Ar-H); 5. 66-5. 65(1H,d, J =5. 1 Hz,NH); 5. 38(1H,s,CH); 4. 13-4. 06(2H,q,-OCH ₂ -); 2. 35(3H,s,-CH ₃); 1. 23-1. 16(3H,t,-CH ₃); IR(KBr,cm ⁻¹); 3 243,2 980,2 935,2 956,1 725, 1 705,1 650,1 573,1 486,1 460,1 423,1 367,1 322,1 289,1 224,1 170,1 089,1 030,1 009,954, 780,628,483; MS(ESI)m/z; 355.1[M+1]
1d	207. 6-208. 1	70	¹ HNMR(300 MHz,CDCl ₃):7.87(1H,s,NH);7.42-7.39(1H,m,Ar-H);7.29-7.22(3H,m,Ar-H);7.21(1H,s,NH);5.92-5.91(1H,s,CH);4.07-4.00(2H,q,-OCH ₂ -);2.48-2.47(3H,s,-CH ₃);1.10-1.05(3H,t,-CH ₃);IR(KBr,cm ⁻¹);3 179,2 984,2 900,1 708,1 653,1 573,1 474,1 383,1 314,1 282,1 255,1 203,1 179,1 133,1 092,1 036,827,785,727,643,535,503;MS(ESI)m/z;327.1[M+1]
2d	218. 1-219. 0	75	¹ HNMR(300 MHz,CDCl ₃);7,80(1H,s,NH);7,41-7,37(1H,m,Ar-H);7,30-7,21(3H,m,Ar-H);5,90-5,89(1H,d, <i>J</i> =3,0 Hz,NH);5,63(1H,s,CH);4,01-4,10(2H,q,-OCH ₂ -);2,46(3H,s,-CH ₃);1,09-1,04(3H,t,-CH ₃);1R(KBr,cm ⁻¹);3,353,3,229,3,113,2,977,2,816,1,696,1,640,1,453,1,384,1,371,1,321,1,298,1,227,1,028,796,755,745,728,659;MS(ESI)m/z;311,1[M+1]

ムモ	+
237	77

Compd.	m. p. θ/℃	Yield (%)	¹ HNMR, IR and MS
1e	204. 2-204. 7	78	¹ HNMR(300 MHz, CDCl ₃): 7.81-7.79(2H, m, Ar-H); 7.58-7.55(H, m, Ar-H); 7.33(1H, s,
			$NH) ; 5. 55(1H,s,NH) ; 5. 54(1H,s,CH) ; 4. 18-4. 10(2H,q,-OCH_2-) ; 2. 41(3H,s,-CH_3) ; 0. 91-10(2H,q,-OCH_2-) ; 2. 41(3H,s,-CH_3) ; 0. 91-10(2H,q,-CH_3-) ; 0. 91-10(2H,q,-CH_3$
			$0.86(3H, t, -CH_3); IR(KBr, cm^{-1}): 3\ 179, 3\ 027, 2\ 989, 2\ 934, 2\ 909, 1\ 772, 1\ 660, 1\ 595, 1\ 507,$
			$1\ 475, 1\ 384, 1\ 344, 1\ 324, 1\ 275, 1\ 191, 1\ 134, 1\ 104, 737, 690, 676, 650; MS(ESI)\ m/z; 322, 2[M+1]$
2e	183.4-184.6	74	$^{1} \text{HNMR} (300 \text{ MHz, CDCl}_{3}); 8. 20-8. 15 (2 \text{H,t,Ar-H}); 7. 71-7. 69 (1 \text{H,d}, J=6. 0 \text{ Hz,Ar-H}); 7. 56-10.0 \text{ Hz,Ar-H}; 7.$
			$7.50(1\mathrm{H},t,Ar-H); \\ 7.18(1\mathrm{H},s,NH); \\ 5.63-5.62(1\mathrm{H},s,NH); \\ 5.55-5.54(1\mathrm{H},d,J=3.0\mathrm{Hz},\mathrm{CH}); \\ 6.63-5.62(1\mathrm{H},s,NH); \\ 6.63-5.62(1\mathrm{H},s,NH); \\ 6.63-6.62(1\mathrm{H},s,NH); \\ 6.63-6.62(1\mathrm{H},s,NH);$
			$4.13 - 4.10(2H, q, -OCH_2 -); 2.40(3H, s, -CH_3); 0.89(3H, t, -CH_3); IR(KBr, cm^{-1}); 3\ 436, 3\ 330, 330, 330, 330, 330, 330, 330, $
			$3\ 218, 3\ 097, 2\ 966, 1\ 707, 1\ 629, 1\ 525, 1\ 375, 1\ 347, 1\ 316, 1\ 266, 1\ 224, 1\ 088, 900, 808, 754, 686;$
			MS(ESI) m/z:306.1[M+1]
1f	196.4-197.3	70	$^{1} \text{HNMR} (300 \text{ MHz,DMSO-} d_{6}) \\ : 10.39 (1\text{H,s,NH}) \\ ; 9.64 (1\text{H,s,NH}) \\ ; 7.58 - 7.57 (1\text{H,m}) \\ ; 6.38 - 9.00 \\ ; 10.39 (1\text{H,s,NH}) \\ ; 10.39$
			$6.36(1\mathrm{H},\mathrm{m});6.14\text{-}6.13(1\mathrm{H},\mathrm{d},J=3.0\mathrm{Hz});5.23\text{-}5.22(1\mathrm{H},\mathrm{d},J=3.9\mathrm{Hz},\mathrm{CH});4.09\text{-}3.99(2\mathrm{H},\mathrm{d},J=3.9);$
			$\tt q, -OCH_2-)~; 2.~27(3H, s, -CH_3)~; 1.~15-1.~10(3H, t, -CH_3)~; IR(KBr, cm^{-1})~; 3~381, 3~316, 3~275,\\$
			$3\ 178, 3\ 096, 2\ 686, 1\ 664, 1\ 614, 1\ 574, 1\ 472, 1\ 415, 1\ 374, 1\ 338, 1\ 276, 1\ 188, 1\ 149, 1\ 115, 1\ 086,$
			$1\ 007,927,803,759,730,631,567,491; MS(ESI) \ m/z; 267.2 \ [M+1]$
2 f	207. 2-208. 0	71	¹ HNMR(300 MHz, DMSO-d ₆): 9. 22(1H, s, NH); 7. 74(1H, s, NH); 7. 54-7. 53(1H, m); 6. 35-
			$6.33(1\mathrm{H,m}); \\ 6.08-6.07(1\mathrm{H,d,}J=3.0\mathrm{Hz}); \\ 5.20-5.19(1\mathrm{H,d,}J=3.3\mathrm{Hz,CH}); \\ 4.05-3.98(2\mathrm{H,d,}J=3.3\mathrm{Hz,CH}); \\ 4.05-3.38(2\mathrm{H,d,}J=3.38(2\mathrm{H,d,}J=3.38(2\mathrm{H,d,}J=3.38(2\mathrm{H,d,}J=3.38(2$
			$q, -OCH_2-); 2.\ 22(3H, s, -CH_3); 1.\ 15-1.\ 10(3H, t, -CH_3); IR(KBr, cm^{-1}); 3\ 246, 3\ 118, 2\ 975,$
			2 940,1 703,1 651,1 541,1 499,1 474,1 436,1 383,1 369,1 318,1 296,1 235,1 206,1 147,1 100,
			$1\ 015,801,777,741,643,462;MS(ESI)m/z;251.1[M+1]$

综上所述,本研究应用对环境友好的 L-樟脑磺酸根离子替换可能对环境造成危害的氟离子等获得的绿色离子液体可以催化 Biginelli 反应合成二氢嘧啶酮类化合物 monastrol 及其衍生物,并得到了较好的收率,验证了我们的设计思想,初步获得了一条操作简便、耗时短、环境友好的绿色合成路线。经初步检索,还未见利用二取代咪唑-L-樟脑磺酸盐进行Biginelli 反应的研究,因此,新型绿色室温离子液体1-丁基-3-甲基咪唑-L-樟脑磺酸盐在微波、无溶剂Biginelli 反应中的成功尝试是本研究的最大亮点。但与其他的微波反应对照,本反应的反应时间、催化剂用量、后处理条件等仍值得进一步优化。另外,所选阴离子具有手性,这又为进一步探索该绿色离子液体对Biginelli 反应的立体选择性方面的研究提供了良好的基础。

[参考文献]

- [1] Russowsky D, Benvenutti E V, Roxo G S, Grasel F. Multicomponent synthesis of 3,4-dihydropyrimidin-2-(1H)-ones with a Cu/Silica xerogel composite catalyst [J]. Lett Organ Chem, 2007,4:39-41.
- [2] Jain S L. Joseph J K. Singhal S. Sain B. Metallophthalocyanines (MPcs) as efficient heterogeneous catalysts for Biginelli condensation; application and comparison in catalytic activity of different MPcs for one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones[J]. J Mol Catal A-Chem, 2007, 268:134-138.
- [3] 付 岩,张爱黎,杨 沫.强酸性离子交换树脂催化合成 5-乙氧

- 羰基-4-苯基-6-甲基-3,4-二氢嘧啶-2(1*H*)-酮[J]. 化学与生物工程,2009,5;26-28.
- [4] Mayer T U, Kapoor T M, Haggarty S J, King R W, Schreiber S L, Mitchison T J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen [J]. Science, 1999, 286; 971-974.
- [5] Svetlik J, Veizerová L, Mayer T U, Catarinella M. Monastrol analogs: a synthesis of pyrazolopyridine, benzopyranopyrazolopyridine, and oxygen-bridged azolopyrimidine derivatives and their biological screening[J]. Bioorgan Med Chem Lett, 2010, 7:4073-4076.
- [6] Biginelli P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids[J]. Gazz Chim Ital, 1893, 23; 360-413.
- [7] 宛 瑜,叶 玲,吴 翚. 淀粉磺酸酯催化的水相 Biginelli 反应 [J]. 徐州师范大学学报:自然科学版,2008,26:45-47.
- [8] 邵国强. 离子液体中微波促进的 Biginelli 缩合反应[J]. 合成化学,2004,12:325-328.
- [9] 孙淑琴,李英俊,周晓霞,张治广.5-乙氧羰基-4-(2-呋喃基)-6-甲基-3,4-二氢嘧啶-2(1H)-酮的超声波辐射合成[J].辽宁师范大学学报:自然科学版,2010,33:357-360.
- [10] 彭家建,邓友全. 室温离子液体催化"一锅法"合成 3,4-二氢嘧 啶-2-酮[J]. 有机化学,2002,1:71-73.
- [11] Swatloski R P. Holbrey J D. Rogers R D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Green Chem, 2003, 5:361-363.
- [12] 李长多,张学俊.1,3-二烷基咪唑类离子液体的合成研究[J]. 化工中间体,2008,11:63-66.
- [13] Kerr J F R, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with widernaging implications in tissue kinetics
 [J]. Brit J Cancer, 1972, 26:239-257.

[本文编辑] 尹 茶