• 1198 •

DOI:10.16781/j.0258-879x.2020.11.1198

・专题报道・

基于棘突体表投射空间三维位置的脊柱形态测量仪在脊柱侧凸形态 测量中的初步应用

赵 检^{1,2Δ},陈 锴^{1Δ},李强华³,杭辉冬⁴,毛宁方¹,沈林勇³,杨长伟^{1*},李 明¹ 1.海军军医大学(第二军医大学)长海医院骨科,上海 200433 2.西部战区总医院骨科,成都 610083 3.解放军 73653 部队卫生连,泉州 362000 4.上海大学机电工程与自动化学院,上海 200072

[摘要] **日** 69 探讨基于棘突体表投射空间三维位置的脊柱形态测量仪在不同脊柱侧凸形态测量中的应用。 方法 纳入 32 例青少年特发性脊柱侧凸(AIS)患者,应用空间姿态传感器感知棘突位置变化的脊柱形态测 量仪,测量患者背部体表投射位置的棘突连线成角(SPA)。采用线性回归模型构建 SPA 与全脊柱正侧位 X线 片所测量 Cobb 角的数量关系。根据 Lenke 分型进行亚组分析,探究在不同侧凸形态中 SPA 与全脊柱正侧位 X线 片所测量 Cobb 角的数量关系。根据 Lenke 分型进行亚组分析,探究在不同侧凸形态中 SPA 与Cobb 角的数量 关系。结果 32 例 AIS 患者中男 11 例、女 21 例,年龄为(13.94±0.84)岁;Lenke I型 20 例,Lenke V型 12 例;8 例患者主弯累及 T₅~T₁₁,4 例累及 T₅~T₁₂,1 例累及 T₆~T₁₁,7 例累及 T₆~T₁₂,4 例累及 T₁₁~L₃,8 例 累及 T₁₂~L₄。线性回归分析发现,在AIS 患者中 Cobb 角与 SPA 呈线性关系,两者之间线性回归方程为:Cobb 角= 1.128×SPA+3.724。进一步亚组分析发现,在Lenke I型 AIS 患者中 Cobb 角和 SPA 同样存在线性关系,两者之间线 性回归方程为:Cobb 角=1.128×SPA+3.303。结论 基于棘突体表投射空间三维位置的脊柱形态测量仪能够用于 脊柱胸段侧凸的形态测量,棘突在体表的空间投射位置是脊柱形态测量的有效解剖参考标志。

[关键词] 脊柱侧凸; 棘突体表投射位置; 姿态传感器; 棘突连线成角
 [中图分类号] R 682.3 [文献标志码] A [文章编号] 0258-879X(2020)11-1198-05

Spine morphology measuring instrument based on three-dimensional projection position of the spinous process on body surface: preliminary application in scoliosis

ZHAO Jian^{1,2}, CHEN Kai¹, LI Qiang-hua³, HANG Hui-dong⁴, MAO Ning-fang¹, SHEN Lin-yong³, YANG Chang-wei^{1*}, LI Ming¹ 1. Department of Orthopaedics, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China

2. Department of Orthopaedics, General Hospital of Western Theater Command of PLA, Chengdu 610083, Sichuan, China

3. Hygienic Company, No. 73653 Troop of PLA, Quanzhou 362000, Fujian, China

4. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China

[Abstract] Objective To apply spine morphology measuring instrument based on three-dimensional projection position of the spinous process on the body surface in different types of scoliosis. **Methods** Thirty-two adolescent idiopathic scoliosis (AIS) patients were enrolled in this study. The spine morphology measuring instrument based on space posture sensor was used to measure the spinous process angle (SPA) of the projection position on the patient back surface. Then linear regression model was used to establish the quantitative relationship between SPA and Cobb angle measured by full-spine X-ray film. Based on the Lenke classification, subgroup analysis was conducted to further explore the quantitative relationship between SPA and Cobb angle in different types of scoliosis. **Results** The 32 AIS patients included 11 males and 21 females, with an average age of (13.94 ± 0.84) years; 20 cases were Lenke type I and 12 cases were Lenke type V; eight cases had main curvature of T₅-T₁₁, four cases of T₅-T₁₂, one case of T₆-T₁₁, seven cases of T₆-T₁₂, four cases of T₁₁-L₃, and eight cases of T₁₂-L₄. Linear regression analysis found that the Cobb angle had a linear relationship with the SPA in AIS patients: Cobb

[[]收稿日期] 2018-12-24 [接受日期] 2019-06-26

[[]基金项目] 国家自然科学基金(31870985),上海市自然科学基金(16ZR1449100). Supported by National Natural Science Foundation of China (31870985) and Natural Science Foundation of Shanghai (16ZR1449100).

[[]作者简介] 赵 检,博士生.E-mail: 782129603@qq.com;陈 锴,硕士生.E-mail: spine_kai@smmu.edu.cn

[△]共同第一作者(Co-first authors).

^{*}通信作者(Corresponding author). Tel: 021-31161700, E-mail: changwei_y@qq.com

angle= $1.128 \times SPA + 3.724$. Further subgroup analysis showed that for Lenke type I AIS patients, the quantitative relationship was: Cobb angle= $1.128 \times SPA + 3.303$. **Conclusion** The spine morphology measuring instrument based on three-dimensional projection position of the spinous process on the body surface can be initially applied to measure the spine morphology of the thoracic scoliosis. The spatial projection position of the spinous process on the body surface is an effective anatomical reference marker for spinal morphometry.

[Key words] scoliosis; projection position of the spinous process on the body surface; posture sensor; spinous process angle [Acad J Sec Mil Med Univ, 2020, 41(11): 1198-1202]

青少年特发性脊柱侧凸 (adolescent idiopathic scoliosis, AIS)是常见的脊柱三维畸形,在总人群 中的患病率为1%~3%^[1-2]。AIS的治疗需要综合 考虑年龄、性别、骨骼发育成熟度、Cobb 角等因 素,其中Cobb角是最主要的因素,通常对于Cobb 角为 10°~20°的 AIS 患者推荐临床观察, Cobb 角为 20°~40°的患者推荐佩戴矫形支具,而45°以上、畸 形进展风险较大的患者推荐手术矫形融合侧凸[2]。 绝大部分AIS患者的处理措施是临床观察或佩戴支 具,需要反复多次拍摄全脊柱正侧位X线片以动态评 估 Cobb 角的变化, 然而有研究表明侧凸患者反复多 次拍摄全脊柱正侧位X线片会损伤其体内的DNA^[3]。 因此,学者们开展了许多非X线技术尝试评估脊柱 形态,如云纹摄影、三维超声和三维电子重力角度 感应技术等^[45]。海军军医大学(第二军医大学) 长海医院骨科联合上海大学机电工程与自动化学院 设计制作了基于姿态传感器的脊柱形态测量仪(国 家发明专利申请号: 201711081531.8)^[6],前期模 拟实验和初步6例临床试验结果提示其精度高、可

重复性高、使用方便^[7]。本研究通过进一步扩大临 床病例探索该脊柱形态测量仪在 AIS 患者侧凸形态 测量中的应用效果。

1 资料和方法

1.1 脊柱形态测量仪及其测量原理 脊柱形态测量仪通过其内置姿态传感器感知棘突位置变化,姿态传感器及其计算程序为该测量仪的核心部件。 姿态传感器由三轴陀螺仪、三轴加速度计和三轴磁力计组成,能够感知相对水平面的姿态,根据姿态特征计算棘突连线的角度。测量时,将测量仪紧贴人体后背,并且固定在测量人员的示指和中指背部。测量人员首先触及患者 C₇ 椎体棘突,示指和中指的指腹自上而下滑动触诊 AIS 患者棘突,通过姿态传感器记录指腹滑行轨迹,以反映患者体表投射位置的棘突连线成角(spinous process angle, SPA)。当患者侧凸类型为双弯甚至三弯时,测量

仪当前程序设定为只读取其 SPA 最大的度数。测量仪的内部结构、外观和患者测量过程见图 1。

图 1 脊柱形态测量仪结构、患者测量过程及脊柱正侧位 X 线片 Fig 1 Structure of spine morphology measuring instrument and measuring procedure and anteroposterior and lateral radiographs of a patient

A: Internal structure of the measuring instrument; B: External view of the measuring instrument; C, D: The measuring instrument was close to the back of the subject, continually palpating patient's spinous process, and spinous process angle measured by the measuring instrument was 34°; E, F: Anteroposterior and lateral radiographs of the patient, the Cobb angle was 38°

1.2 临床资料 2015年11月至2018年9月,我们应用该脊柱形态测量仪测量了海军军医大学

(第二军医大学)长海医院骨科收治的 32 例 AIS 患者的 SPA。所有患者均由同一测量人员重复测量

3次,取平均值。研究对象纳入标准:(1)明确诊 断为AIS;(2)拍摄全脊柱正侧位X线片,通过正 位X线片测量主弯冠状面Cobb角,并记录侧凸累及 节段;(3)无其他类型脊柱畸形。本研究通过海 军军医大学(第二军医大学)伦理委员会审批,将 研究方案充分告知受试者及其家属并取得同意。 1.3 统计学处理 采用SPSS 18.0软件进行统计学 分析。每例患者均采用脊柱形态测量仪测量 SPA, 采用Cronbach α系数评价组内测量一致性。采用 单因素线性回归模型构建Cobb角和SPA测量值之 间的数量关系。根据侧凸类型的差异进行亚组分 析,在Lenke I型和Lenke V型AIS患者中分别探 讨Cobb角和SPA测量值之间的数量关系。检验水 准(α)为0.05。

2 结 果

2.1 SPA 测量结果 32 例 AIS 患者中, 男 11 例、 女 21 例, 年 龄 为 (13.94±0.84) 岁; Lenke I 型 20 例, Lenke V 型 12 例; 8 例 患者主弯累及 $T_5 \sim T_{11}$, 4 例 累 及 $T_5 \sim T_{12}$, 1 例 累 及 $T_6 \sim T_{11}$, 7 例 累 及 $T_6 \sim T_{12}$, 4 例 累 及 $T_{11} \sim L_3$, 8 例 累 及 $T_{12} \sim L_4$; 5 例 患 者 Risser 征 为 3 级, 15 例 患 者 Risser 征为 4 级, 12 例 患者 Risser 征为 5 级; 主弯 冠状面 Cobb 角为 13°~42°, 平均 (37.88±5.59)°。 脊柱形态测量 仪测量结果显示, SPA 测量值为 9.67°~36.00°, 平均 (30.26±4.74)°。见表 1。

农 I 52 所 AIS 志有 放贝杆及 SIA 购里泊木	表 1	32 例 AIS 患者一般资料及 SPA 测量结果
-------------------------------	-----	---------------------------

		1		ciici ai ua		1 measurer	inclit results of th	it 52 Als patient	.9		
No.	Gender	Age (year)	Risser grade	Lenke type	Segment	Cobb SPA (°)					
						angle (°)	Measurement 1	Measurement 2	Measurement 3	Mean	
1	Female	13	4	Ι	T ₅ -T ₁₁	25	21	21	20	20.67	
2	Male	15	5	Ι	T ₅ -T ₁₁	34	29	22	26	25.67	
3	Male	13	3	Ι	T ₅ -T ₁₁	37	31	28	27	28.67	
4	Female	14	4	Ι	T ₅ -T ₁₁	40	35	32	35	34.00	
5	Female	15	5	IO	T ₅ -T ₁₁	40	35	> 31	34	33.33	
6	Female	15	5	IO	T ₅ -T ₁₁	40	35	34	34	34.33	
7	Female	13	3	19	$T_{5}-T_{11}$	410	38 38	34	36	36.00	
8	Male	15	4	Ι	T ₅ -T ₁₁	42	37	32	35	34.67	
9	Male	14	5	Ι	T ₅ -T ₁₂	13	10	9	10	9.67	
10	Female	13	4	Ι	T ₅ -T ₁₂	40	29	34	32	31.67	
11	Male	14	4	Ι	T ₅ -T ₁₂	40 E	34	28	31	31.00	
12	Female	13	4	Ι	T ₅ -T ₁₂	40	35	32	34	33.67	
13	Female	15	4	Ι	T ₆ -T ₁₁	38	32	29	31	30.67	
14	Female	15	5	Ι	T ₆ -T ₁₂	33	29	27	28	28.00	
15	Female	13	4	Ι	T ₆ -T ₁₂	35	29	28	25	27.33	
16	Male	15	5	Ι	T ₆ -T ₁₂	38	32	26	30	29.33	
17	Female	15	5	Ι	T ₆ -T ₁₂	40	34	31	28	31.00	
18	Male	14	4	Ι	T ₆ -T ₁₂	40	34	29	31	31.33	
19	Male	14	4	Ι	T ₆ -T ₁₂	41	34	32	34	33.33	
20	Female	13	4	Ι	T ₆ -T ₁₂	42	36	31	29	32.00	
21	Male	13	4	\mathbf{V}	T_{11} - L_3	39	31	32	28	30.33	
22	Female	14	5	\mathbf{V}	T_{11} - L_3	40	31	32	36	33.00	
23	Male	14	4	\mathbf{V}	T_{11} - L_3	40	31	29	28	29.33	
24	Female	13	4	\mathbf{V}	T_{11} - L_3	40	32	31	28	30.33	
25	Female	14	4	\mathbf{V}	T_{12} -L ₄	36	30	31	28	29.67	
26	Female	15	5	\mathbf{V}	T_{12} -L ₄	38	33	30	29	30.67	
27	Female	14	5	\mathbf{V}	T_{12} -L ₄	40	28	34	29	30.33	
28	Female	15	5	\mathbf{V}	T_{12} -L ₄	40	32	28	31	30.33	
29	Male	14	5	\mathbf{V}	T_{12} -L ₄	40	33	28	35	32.00	
30	Female	13	3	\mathbf{V}	T_{12} -L ₄	40	31	31	33	31.67	
31	Female	13	3	\mathbf{V}	T_{12} -L ₄	40	32	33	32	32.33	
32	Female	13	3	\mathbf{V}	T.J.	40	32	35	29	32.00	

Tab 1 General data and SPA measurement results of the 32 AIS nationts

The three measurements were repeated by the same researcher. AIS: Adolescent idiopathic scoliosis; SPA: Spinous process angle

2.2 SPA 测量一致性评估 对于 32 例 AIS 患者,
SPA 组内测量一致性较高(Cronbach α系数为 0.938)。进一步亚组分析发现,对于胸弯(Lenke I型)患者测量的重复性(Cronbach α系数为 0.973)优于腰弯(Lenke V型)患者(Cronbach α 系数为 0.379)。

2.3 Cobb 角与 SPA 测量值的数量关系 线性回归 分析发现,在AIS 患者中,Cobb 角与 SPA 测量值 呈线性关系,两者之间的线性回归方程为:Cobb 角=1.128×SPA+3.724。进一步亚组分析发现, 在 Lenke I型 AIS 患者中,Cobb 角和 SPA 同样存在 线性关系,两者之间的线性回归方程为:Cobb 角= 1.128×SPA+3.303;但是在 Lenke V型患者中,测 量的 SPA 值不能很好地预测Cobb 角。见表 2。

表 2 AIS 患者 Cobb 角与 SPA 测量值的 线性回归分析结果

 Tab 2
 Linear regression analysis results of Cobb angle

 and SPA in AIS natients

unu or		putternes		
Group	В	SE	t value	P value
The whole group		10		
Constant	3.724	1.895	1.965	0.059
SPA	1.128	0.062	18.237	< 0.01
Lenke type I subgroup				11
Constant	3.303	1.948	1.696	0.107
SPA	1.128	0.064	17.598	< 0.01
Lenke type V subgroup				MIY N
Constant	25.387	9.548	2.659	0.024
SPA	0.453	0.308	1.470	0.172

AIS: Adolescent idiopathic scoliosis; SPA: Spinous process angle; *B*: Regression coefficient; *SE*: Standard error

3 讨 论

Cobb角是AIS评估最主要的指标,测量Cobb 角的常见方法包括X线片、CT和全脊柱MRI^[8]。 CT和MRI多用于术前评估,应用最为广泛的还是 全脊柱正侧位X线片。畸形进展风险较大的患者 需要反复多次暴露于X线,这会损伤患者身体, 但是目前缺乏可替代X线片的测量方法^[9]。尽管 MRI在测量Cobb角方面具有很高的精度及可重复 性^[10],但是目前缺乏可以站立拍摄全脊柱MRI的 仪器。因此,许多学者探讨了不同的非X线片检 出侧凸和评估Cobb角的方法。最常见的检查方法 为 Adans 试验(前屈试验),这也是目前学校筛查 AIS 时最常用的方法^[11],其缺点在于不能够客观 定量测量患者 Cobb 角。当前的非 X 线测量参考标 志一般采用人体背部结构,云纹摄影和红外线测量 方法都是根据背部不对称指数评估患者是否存在脊 柱侧凸^[12]。但是,这些方法都不能精确定量侧凸 Cobb 角。

香港中文大学报道了三维超声测量脊柱形态 的方法^[4]。该研究发现 Cobb 角与超声测量相关系 数>0.75, 表明超声测量精确度高; 该研究还发现 佩戴支具时 Cobb 角和测量值的相关系数大于不佩 戴支具时的相关系数,表明超声测量可应用于支具 矫形效果的监测。与既往非X线片测量不同, 超声 测量选用的参考解剖标志为棘突。通过超声采集棘 突的图像,经过重建可得到棘突连线序列的三维图 像。早在1990年, Herzenberg 等^[13]就报道了采用 SPA 描述侧凸形态的方法。SPA 测量主要为切线测 量方法。由于椎体旋转的存在, SPA 要小于站立位 Cobb角^[14]。椎体旋转越大,SPA与Cobb角数量 上的差异就越大。本研究同样采用棘突作为背部的 解剖参考标志。相对于超声定位棘突的方法不同, 本研究采用示指和中指的指腹触诊定位, 通过固定 于指背的姿态传感器测量仪记录棘突的相对空间位 置。前期的初步研究发现,体表触及棘突定位方法 可重复性高,测量仪精度高^[7]。本研究发现,体表 投射位置的 SPA 与 Cobb 角呈线性相关,线性回归 方程为Cobb角=1.128×SPA+3.724。因此,基于 棘突体表投射空间三维位置的脊柱形态测量方法将 是一种有潜力的策略。

然而,本研究中亚组分析发现,基于棘突体表 投射空间三维位置的脊柱形态测量方法仅对胸弯 (Lenke I型)AIS具有很好的预测意义,而对于 腰弯(Lenke V型)患者预测价值不高。其原因主 要有以下几点:(1)腰背部软组织比胸背部厚, 软组织过厚会影响指腹滑动触及棘突的精确度; (2)测量时由于腰椎向前凸,操作过程中测量仪 不能很好地贴于患者背部;(3)设计制作的测量 仪底部较宽,不能很好地贴于凸向前侧的腰段脊 柱,需要进一步改进。

本研究结果初步表明,基于棘突体表投射空间 三维位置的脊柱形态测量仪能够应用于胸段侧凸的 形态测量。棘突在体表的空间投射位置是脊柱形态 测量很好的解剖参考标志,空间姿态传感器是测量 脊柱形态的一种解决方案,值得进一步研究。

[参考文献]

- [1] WEINSTEIN S L, DOLAN L A, CHENG J C Y, DANIELSSON A, MORCUENDE J A. Adolescent idiopathic scoliosis[J]. Lancet, 2008, 371: 1527-1537.
- [2] DUNN J, HENRIKSON N B, MORRISON C C, BLASI P R, NGUYEN M, LIN J S. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force[J]. JAMA, 2018, 319: 173-187.
- [3] HIMMETOGLU S, GUVEN M F, BILSEL N, DINCER
 Y. DNA damage in children with scoliosis following
 X-ray exposure[J]. Minerva Pediatr, 2015, 67: 245-249.
- [4] LI M, CHENG J, YING M, NG B, LAM T P, WONG M S. A preliminary study of estimation of Cobb's angle from the spinous process angle using a clinical ultrasound method[J]. Spine Deform, 2015, 3: 476-482.
- [5] SCHMID S, STUDER D, HASLER C C, ROMKES J, TAYLOR W R, BRUNNER R, et al. Using skin markers for spinal curvature quantification in main thoracic adolescent idiopathic scoliosis: an explorative radiographic study[J/OL]. PLoS One, 2015, 10: e0135689. doi: 10.1371/journal.pone.0135689.
- [6] 沈林勇,杭辉冬,赵检,杨长伟,朱晓东,张震.一种测量脊柱形态的测量仪:201711081531.8[P].2017-11-07.
- [7] 沈林勇,杭辉冬,赵检,杨长伟,张震.基于姿态传感器的脊柱形态测量技术[J]. 传感技术学报,2018,31: MED/G 841-846.

- [8] 李志鲲,江远亮,李超,赵颖川,白玉树,朱晓东,等.全 脊柱核磁共振成像法评估青少年特发性脊柱侧凸的可 行性研究[J].中国骨与关节损伤杂志,2015,30:48-50.
- [9] RIGO M D, VILLAGRASA M, GALLO D. A specific scoliosis classification correlating with brace treatment: description and reliability[J/OL]. Scoliosis, 2010, 5: 1. doi: 10.1186/1748-7161-5-1.
- [10] WATANABE K, AOKI Y, MATSUMOTO M. An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from Moiré images[J]. Neurospine, 2019, 16: 697-702.
- [11] FONG D Y, LEE C F, CHEUNG K M, CHENG J C, NG B K, LAM T P, et al. A meta-analysis of the clinical effectiveness of school scoliosis screening[J]. Spine (Phila Pa 1976), 2010, 35: 1061-1071.
- BRINK R C, COLO D, SCHLÖSSER T P C, VINCKEN K L, VAN STRALEN M, HUI S C N, et al. Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis[J/OL]. Scoliosis Spinal Disord, 2017, 12: 6. doi: 10.1186/s13013-017-0111-5.
- [13] HERZENBERG J E, WAANDERS N A, CLOSKEY R
 F, SCHULTZ A B, HENSINGER R N. Cobb angle versus spinous process angle in adolescent idiopathic scoliosis. The relationship of the anterior and posterior deformities[J].
 Spine (Phila Pa 1976), 1990, 15: 874-879.
- [14] MORRISON D G, CHAN A, HILL D, PARENT E C, LOU E H. Correlation between Cobb angle, spinous process angle (SPA) and apical vertebrae rotation (AVR) on posteroanterior radiographs in adolescent idiopathic scoliosis (AIS)[J]. Eur Spine J, 2015, 24: 306-312.

[本文编辑] 孙 岩