基于系统生物学整合技术挖掘结直肠癌形成中的核心通路和驱动基因
CSTR:
作者:
作者单位:

浙江省平湖市第一人民医院外科,第二军医大学长海医院肛肠外科,第二军医大学长海医院肛肠外科,浙江省平湖市第一人民医院外科,浙江省平湖市第一人民医院外科,第二军医大学长海医院肛肠外科,第二军医大学长海医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Integrated genomic analysis-based identification of core pathways and driver genes associated with colorectal carcinoma
Author:
Affiliation:

The First People’s Hospital of Pinghu,Zhejiang Pinghu,Department of Colorectal Surgery,Changhai Hospital,Second Military Medical University,Department of Colorectal Surgery,Changhai Hospital,Second Military Medical University,The First People’s Hospital of Pinghu,Zhejiang Pinghu,The First People’s Hospital of Pinghu,Zhejiang Pinghu,Department of Colorectal Surgery,Changhai Hospital,Second Military Medical University,Department of Colorectal Surgery,Changhai Hospital,Second Military Medical University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探索结直肠癌(colorectal carcinoma, CRC)形成中的核心通路和关键基因。方法 利用meta分析技术从以往5项CRC发生相关转录组学研究中筛选癌及癌旁差异表达基因。采用ComBat方法合并5项研究的癌组织基因表达谱数据,针对上述差异表达基因用PCIT软件进行共表达网络构建。利用CFinder软件揭示该共表达网络中存在的核心亚网络,并用Gather软件确定主要核心亚网络所富集的生物学功能。以重要核心亚网络(或通路)为重点,联合节点基因在CRC中的表达变化方向和相应染色体区域扩增或缺失的信息,发现亚网络功能形成中的候选驱动基因。结果 Meta分析转录组学研究共发现差异表达基因2 073个,其中在5项研究的癌组织中一致上调 1 174个,一致下调899个,这些基因在CRC样本中形成的共表达网络包括798个基因节点和1 462条边,存在22个核心亚网络。最大的核心亚网络由77个基因和436条边组成,功能涉及细胞周期和增殖信号调控,UBE2CMYBL2、FAM83DAURKATPX2等11个基因被预测为该信号功能的驱动基因。结论 细胞周期和增殖信号通路是结直肠癌发生中的核心通路,UBE2CAURKA等11个基因是该核心通路的驱动基因。

    Abstract:

    Objective To investigate the core pathways and driver genes associated with development of colorectal carcinoma (CRC). Methods Meta-analysis was employed to screen differently expressed genes between CRC and the adjacent normal mucosa in 5 studies. ComBat was used to combine the gene data of the 5 studies and then the differently expressed genes were used to construct a stable co-expression network in CRC using PCIT software. CFinder software was used to extract the core sub-networks of the constructed coexpression network, and Gather software was used for functional enrichment analysis of the core subnetworks. Finally, those genes with up-regulation and DNA gain in CRC or down-regulation and DNA loss were identified as driver genes. Results Our meta-analysis found 2 073 differently expressed genes between CRC and the adjacent normal mucosa, including 1 174 up-regulated and 899 down-regulated in 5 the CRC studies. A coexpression network was constructed with those differently expressed genes; it had 798 nodes, 1 462 edges, and 22 core subnetworks. The largest sub-network consisted 77 genes and 436 edges, and the function mainly involved cell cycle and proliferation regulation, with the driver genes including UBE2C, MYBL2, FAM83D, AURKA and TPX2. Conclusion Cell cycle and proliferation pathways are the core ones in the development of CRC, and 11 genes including UBE2C and AURKA are the driver genes of the pathways.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-13
  • 最后修改日期:2015-04-28
  • 录用日期:2015-06-03
  • 在线发布日期: 2015-06-23
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭