一种基于注意力机制的电子病历中药物词向量转化方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R197.324

基金项目:

国家自然科学基金(81873915),国家重点研发计划(2018YFC0116902),南通市科技项目(CP12016003).


A drug word vector conversion method in electronic medical record based on attention mechanism
Author:
Affiliation:

Fund Project:

Supported by National Natural Science Foundation of China (81873915), National Key Research and Development Plan (2018YFC0116902), and Science and Technology Program of Nantong (CP12016003).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提出一种基于注意力机制的药物词向量生成模型Drug2vec,对药物信息做向量化表示,并与Word2vec和Med2vec模型比较向量转化效果。方法 使用注意力机制捕获医疗实体对中心词的作用,提出Drug2vec模型,将非结构化电子病历中的医疗实体转化为向量。使用包含14 219例系统性红斑狼疮(SLE)患者和963个药物实体的数据集测试Drug2vec模型生成词向量的效果,并且与广泛应用的语言概念空间向量转化模型Word2vec和Med2vec进行对比。结果 在SLE患者数据集中,Drug2vec模型产生的药物词向量准确度优于Word2vec和Med2vec模型。药物词向量相似度排序结果显示Drug2vec模型产生的向量结果符合临床医师的用药顺序。结论 Drug2vec模型可以更精确地利用周围实体修正中心药物实体,从而产生更准确的药物向量。

    Abstract:

    Objective To propose a drug word vector conversion model based on attention mechanism named Drug2vec for generating vectorized representation of drug information, and to compare the vector conversion effect with Word2vec and Med2vec. Methods Using the attention mechanism to capture the roles of medical entities on the central word, we proposed a Drug2vec model to convert medical entities in unstructured electronic medical records into vectors. Using the systemic lupus erythematosus (SLE) dataset of 14 219 patients and 963 drug entities, we tested the effect of the drug vectors generated by Drug2vec and compared it with the widely used language concept space vector conversion models Word2vec and Med2vec. Results In the SLE dataset, the accuracy of drug vectors generated by Drug2vec was higher than those of Word2vec and Med2vec models. The rank results of the similarity of drugs showed that the drug vectors generated by Drug2vec were consistent with the clinician's medication order. Conclusion Drug2vec model can more accurately modify central drug entities using contextual entities, producing more precise drug vectors.

    参考文献
    相似文献
    引证文献
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-30
  • 最后修改日期:2020-02-21
  • 录用日期:
  • 在线发布日期: 2020-11-16
  • 出版日期:
文章二维码
重要通知
友情提醒: 近日发现论文正式见刊或网络首发后,有人冒充我刊编辑部名义给作者发邮件,要求添加微信,此系诈骗行为!可致电编辑部核实:021-81870792。
            《海军军医大学学报》编辑部
关闭