Effect of silk fibroin on degradation and in vivo biocompatibility of poly (L-lactic-co-ε-caprolactone) electronspun nanofibrous scaffolds
CSTR:
Author:
Affiliation:

ChangZheng hospital attached to The Second Military Medical University,ChangZheng hospital attached to The Second Military Medical University,Department of Paediatrics and Obstetrics of BaoDing First Central Hospital,,ChangZheng hospital attached to The Second Military Medical University,ChangZheng hospital attached to The Second Military Medical University,ChangZheng hospital attached to The Second Military Medical University

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To investigate the effect of silk fibroin (SF) on degradation and biocompatibility of poly (L-lactic acid-co-ε-caprolactone)(P[LLA-CL]) in vivo. Methods The scaffolds of P(LLA-CL) (w/w=1:1) blended with 25% of SF (SF/P[LLA-CL]) and P(LLA-CL) were prepared by electrospinning. Both kinds of scaffolds were subcutaneously implanted in 45 6-month-old rats for up to 6 months to evaluate their degradation and biocompatibility characteristics. Results Pathological sections showed P(LLA-CL) scaffold become swollen and began to separate into different layers after 3 months, and then become broken after 6 months; while SF/P(LLA-CL) scaffold largely maintained its structure after 6 months. Immunohistochemical staining showed a large number of macrophages on the surface and in P(LLA-CL) scaffolds 1 month after implantation, and they could still be found 3 months after implantation, accompanied by foreign body giant cells; while no obvious macrophages or foreign body giant cells were found in SF/P(LLA-CL) scaffolds at different time points. Examination of inflammatory gene expression showed that TNF-α and IL-10 expression in P(LLA-CL) scaffolds was significantly higher than that in SF/P(LLA-CL) scaffolds 1 week after implantation (P<0.05), the same was also true for TNF-α, IL-1β and IL-10 expression 1 month after implantation (P<0.05), for TNF-α and IL-10 expression 2 months after implantation (P<0.05), for TGF-β expression 3 months after implantation (P<0.05), and for IL-1β and TGF-β expression 6 months after implantation (P<0.05). Conclusion SF incorporation can delay degradation, reduce inflammation, and improve the biocompatibility of P(LLA-CL) scaffolds, which may provide reference for scaffold design in tissue engineering.

    Reference
    Related
    Cited by
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 08,2014
  • Revised:January 19,2015
  • Adopted:May 08,2015
  • Online: May 19,2015
  • Published:
Article QR Code