Construction of gastroscopic image recognition model based on transfer learning and its application in gastric cancer diagnosis
CSTR:
Author:
Affiliation:

1.Department of Gastroenterology,The First Affiliated Hospital of Jinan University;2.Division of Laboratory Medicine,Zhujiang Hospital,Southern Medical University

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To construct a gastroscopic image recognition model based on transfer learning and to explore its diagnostic value for gastric cancer. Methods The clear white-light gastroscopic images from 2 001 gastric cancer patients, 2 119 gastric ulcer patients and 2 168 chronic gastritis patients were collected. All these images were divided into training set image group (1 851 gastric cancer, 1 969 gastric ulcer, and 2 018 chronic gastritis) and testing set image group (150 gastric cancer, 150 gastric ulcer, and 150 chronic gastritis). Champion models VGG19, ResNet50 and Inception-V3 in ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) competition were used as pre-trained models. These models were revised for model training. The training set images were assigned to train the above 3 models, and the testing set images were assigned to validate the models. The whole training process was divided into 2 steps (pre-training and finetuning). Results It was found that ResNet50 ranked No.1 in terms of testing accuracy. Its diagnostic accuracy for gastric cancer, gastric ulcer and chronic gastritis reached 93%, 92% and 88%, respectively. Conclusion Based on transfer learning, the gastroscopic image recognition software model constructed by ResNet50 model can more accurately differentiate gastric cancer from benign gastric diseases (gastric ulcer and chronic gastritis).

    Reference
    Related
    Cited by
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 17,2018
  • Revised:January 26,2019
  • Adopted:April 26,2019
  • Online: June 11,2019
  • Published:
Article QR Code