DOI:10.3724/SP. J. 1008.2008.01296

・论 著•

Fas、FasL 在婴幼儿血管瘤内皮细胞的表达

廖洪跃1,邢 新1*,欧阳天祥2,郭伶俐1,李军辉1,薛春雨1,王晓云1,袁斯明3

- 1. 第二军医大学长海医院整形外科,上海 200433
- 2. 上海交通大学新华医院整形外科,上海 200092
- 3. 南京军区总医院烧伤整形科,南京 210002

目的:检测培养的婴幼儿血管瘤内皮细胞 Fas 和 Fas Ligand (FasL)的表达量。方法:采用组织块结合酶消化法培 养婴幼儿血管瘤内皮细胞,细胞培养成功后,分别运用流式细胞术(flow cytometry,FCM)和荧光定量聚合酶链反应 (fluorescent quantitative polymerase chain reaction, FQ-PCR)2-ΔΔCT 法检测培养的血管瘤内皮细胞 Fas, FasL 和 Fas, FasL mRNA 表达 量,并分别与阳性对照人 Jurkat 细胞和阴性对照人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)进行比较。 结果: FCM 检测培养的血管瘤内皮细胞 Fas 表达率为(90.97±2.36)%,阳性对照 Jurkat 细胞 Fas 表达率为(93.87± 7.60) %, 两者相比无显著差异(P>0.05), 但高于阴性对照 HUVEC(25.07±7.60) %; FQ-PCR 结果显示, 血管瘤内皮细胞 Fas mRNA 的表达量为(1.26±0.72),与阳性对照 Jurkat 细胞的表达量(1.448±0.059)比值为 0.87,差异无显著性(P> 0.05),与阴性对照 HUVEC 的表达量(0.354±0.170)之比为 3.56,差异具显著性(P<0.01)。FCM 和 FQ-PCR 检测 FasL 和 FasL mRNA 在血管瘤内皮细胞、Jurkat 细胞和 HUVEC 表达量均很低,没有生物学意义。 结论: Fas 在婴幼儿血管瘤内皮细 胞呈高度表达,而 FasL 的表达量很低,血管瘤内皮细胞凋亡和 Fas 高表达相关。

[关键词] 血管瘤;内皮细胞;Fas;FasL

「中图分类号 R 732.2

「文献标志码] A

「文章编号」 0258-879X(2008)11-1296-04

Expression of Fas and Fas ligand in endothelial cells of infantile hemangioma

LIAO Hong-yue¹, XING Xin¹*, OUYANG Tian-xiang², GUO Ling-li¹, LI Jun-hui ¹, XUE Chun-yu¹, WANG Xiao-yun¹, YUAN Si-ming³

- 1. Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- 2. Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092
- 3. Department of Burn and Plastic Surgery, General Hospital, PLA Nanjing Military Area Command, Nanjing 210002

[ABSTRACT] Objective: To examine the expression of Fas and Fas ligand(FasL) in cultured infantile hemangioma endothelial cells (IHECs). Methods: IHECs were isolated and cultured by explant combined with trypsin-digested techniques. Then the expression of Fas and FasL on cultured endothelial cells (ECs) were detected by flow cytometry (FCM) and fluorescent quantitative polymerase chain reaction (FQ-PCR) $2^{-\Delta \Delta CT}$ method, and the results in ECs were compared with those in Jurkat cells (positive control) and Human umbilical vein endothelial cells(HUVECs, negative control). Results: The positive rate of Fas in cultured IHECs was $(90.97\pm2.36)\%$ as detected by FCM, similar to that in the Jurkat cells ($[93.87\pm1.64]\%$, P>0.05) and significantly higher than that in the HUVECs (P < 0.01). Fas mRNA expression in the cultured IHECs was 1.260 \pm 0.721 as detected by FQ-PCR, and was 1.448±0.059 in Jurkat cells, with their ratio being 0.87 and with on significant difference found between the 2 group (P > 0.05); the ratio of IHECs to HUVECs (0.354 ± 0.170) was 3.56 and there was significant difference between the 2 groups (P<0.01). The expression of FasL mRNA in cultured IHECs, Jurkat cells and HUVECs was too low as detected by FCM and FQ-RCR to have any biological significance. Conclusion: Fas mRNA is highly expressed in cultured IHECs and FasL is rarely expressed in IHECs, which indicates that apoptosis of IHECs is associated with high expression of Fas in IHECs.

KEY WORDS hemangioma; endothelial cells; Fas; FasL

[Acad J Sec Mil Med Univ, 2008, 29(11):1296-1299]

[收稿日期] 2008-04-30

[接受日期] 2008-07-29

[基金项目] 国家自然科学基金(30571928). Supported by National Natural Science Foundation of China(30571928).

[作者简介] 廖洪跃,博士生,现在武警江西总队医院烧伤整形科,邮编 330030. E-mail: hyliao@163. com

^{*}通讯作者(Corresponding author). Tel:021-25074895,E-mail:xingxin56@yahoo.com.cn

血管瘤(hemangioma)是婴幼儿最常见的良性肿瘤,一般在出生时或出生后 10~14 d 出现,4~5个月时快速增长,1岁左右血管瘤大小达到最高峰,1~2岁之间开始自发消退,完全消退需要 10~12年时间。研究显示血管瘤自发消退系内皮细胞凋亡所致,目前已发现多种促凋亡基因在血管瘤组织中表达,最近发现 Fas、Fas Ligand(FasL)蛋白在血管瘤组织中表达^[1]。Fas 可与其天然配体 FasL 结合,传递凋亡信号,启动凋亡程序,诱导细胞凋亡。本课题研究体外培养的血管瘤内皮细胞是否表达 Fas 和FasL,为明确血管瘤内皮细胞通过 Fas/FasL 途径发生凋亡奠定分子生物学基础。

1 材料和方法

- 1.1 细胞培养试剂和检测仪器 Gibco M199 培养基、胰蛋白酶、青霉素+链霉素、Gibco 胎牛血清(Invitrogen 公司),碱性成纤维细胞生长因子(Pepro 公司),肝素钠(上海伯奥生物科技有限公司),mouse anti-human CD34(Dako 公司),FITC anti-human CD34(Caltag 公司),FITC anti-human Fas(eBioscience 公司),FITC anti-human FasL (BD 公司),FACSCalibur 型流式细胞仪(Becton Dickinson 公司),计算机数据处理软件(BD 公司 Cellquest 软件),Bio Rad Icycler 5 色实时荧光定量 PCR 仪、Icycler version3. 1.7050 荧光定量分析软件(Bio-Rad公司)。
- 1.2 婴幼儿血管瘤内皮细胞的培养 参照文献报 道的方法[2],采用组织块+酶消化法培养血管瘤内 皮细胞。先去除新鲜血管瘤标本多余的皮肤及脂 肪,选择瘤体丰富区域修剪成1~2 cm3的组织块,用 0.25 %胰蛋白酶 37℃振荡消化 10~20 min,将消化 后的组织块修剪成 1 mm3 大小的微粒,接种于事先 用 1% 明胶包被的培养皿内,加入约 0.5 ml 内皮细 胞培养液(成分为 M199 培养基、20% 胎牛血清、25 ng/ml 碱性成纤维细胞生长因子、100 mg/L 肝素、 10 IU/L 青霉素、100 mg/L 链霉素),仅使培养液刚 湿润组织块,勿使组织块浮起,置于体积分数为5% CO₂、37℃培养箱内孵育,24 h 后补充 0.5 ml 培养 液并置培养箱内继续培养,5 d 后更换培养液。接种 后 5~6 d 去除组织块,倒置相差显微镜下确认内皮 细胞岛,细胞刮去除非内皮细胞,更换培养液后继续 培养。待细胞汇合成片铺满培养皿时按1:3比例 接种于培养皿内传代培养。
- 1.3 人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC) 株的培养 HUVEC 株由

- 复旦大学附属中山医院血管外科何红兵教授馈赠,细胞接种至培养皿中,使用内皮细胞培养液(成分为M199培养基、10%小牛血清、10 IU/L青霉素、100mg/L链霉素)进行培养,细胞铺满培养皿底后按1:3比例接种于培养皿内传代培养,每2d换液1次。
- 1.4 人 Jurkat 细胞株的培养 人 Jurkat 细胞株由 第二军医大学长海医院血液内科周虹老师馈赠。 Jurkat 细胞接种至培养瓶内,用淋巴细胞培养液(成分为 RPMI 1640 液体培养基、10%胎牛血清)进行培养,每天换液 1次,细胞密度较高、聚集成团时将细胞悬液按 1:4 传代培养。
- 1.5 血管瘤內皮细胞形态学观察、鉴定及纯度检测 1.5.1 形态学观察 使用倒置相差显微镜观察血 管瘤內皮细胞生长情况和形态学特征,数码照相机 记录观察的结果。
- 1.5.2 免疫组化鉴定 培养成功的血管瘤内皮细胞制作细胞爬片,采用免疫组化 EnVision 法,加入 CD34 鼠抗人抗体进行内皮细胞鉴定。
- 1.5.3 流式细胞术(flow cytometry, FCM)检测内皮细胞纯度 传代的血管瘤内皮细胞长满培养皿后,用 0.25%胰蛋白酶消化细胞,离心(222×g,5 min)收集细胞,调整细胞密度为 1×10⁶/ml;加入CD34-FITC 抗体;上流式细胞仪,检测培养细胞的CD34(+)细胞数。
- 1.6 血管瘤内皮细胞表达 Fas、FasL 的检测
- 1.6.1 FCM 检测 Fas、FasL(+)细胞数 传代的血管瘤内皮细胞长满培养皿后,用 0.25%胰蛋白酶消化细胞,离心($222\times g$,5 min)收集细胞,调整细胞密度为 1×10^6 /ml;分别加入 Fas-FITC、FasL-FITC流式抗体作用 15 min。上流式细胞仪,检测 Fas 和 FasL (+)细胞数。
- 1.6.2 荧光定量聚合酶链反应 (fluorescent quantitative polymerase chain reaction, FQ-PCR) 检测Fas、FasL mRNA 表达 抽提贴壁细胞和悬浮细胞的总 RNA,Dnase I (Rnase Free) 去除基因组DNA,RNA 逆转录合成 cDNA,cDNA 荧光定量PCR 扩增 30 μ l 体系,荧光定量反应体系:荧光定量Master MIX(含 SYBR 荧光染料) 27 μ l,Forward Primer(25 pmol)1 μ l,Reverse Primer(25 pmol)1 μ l,Template 1 μ l,PCR 反应体系总体积为 30 μ l。反应条件:95℃ 3 min,95℃ 20 s、61℃ 20 s、72℃ 30 s,共扩增 50 个循环,最后 72℃ 延伸 5 min,55℃~95℃制作熔解曲线。每例样品均设 3 个平行复孔,取其均值。引物设计:参考文献[1],应用

PRIMER 5.0(ABI 公司)设计 PCR 引物,由上海生工生物工程技术服务有限公司合成。Fas:上游 5′-TTG CTA GAT TAT CGT CCA AAA GTG T-3′,下游 5′-GCA CTT GGT GTT GCT GGT GAG T-3′,产物大小 205 bp,FasL:上游 5′-TTC AGC TCT TCC ACC TAC AGA AGG A-3′,下游 5′-TCA CTC CAG AAA GCA GGA CAA TTC-3′,产物大小 219 bp,GAPDH:上游 5′-ACC ACA GTC CAT GCC ATC AC-3′,下游 5′-TCC ACC ACC CTG TTG CTG TA-3′。产物大小 450 bp。

1.7 统计学处理 计量资料以 $x \pm s$ 表示;实验数据采用 SPSS 11.0 软件(第二军医大学统计学教研室提供)进行统计学分析,FQ-PCR 值采用 $2^{-\Delta \Delta CT}$ 法处理数据^[3]。两组间均数比较应用 t 检验,多组间比较使用方差分析。

2 结 果

2.1 血管瘤内皮细胞的培养、观察、鉴定和纯度测定 组织块接种后最早 48 h,就可见细胞从组织块边缘爬出(图 1A),3~5 d 细胞爬出量最丰富,去除组织块后,3~4 周细胞长满培养皿,内皮细胞呈圆形或多角形,饱满,边界清楚,折光性强,胞膜完整,胞质丰富,核圆形或椭圆形,居中,细胞呈单层分布,无重叠生长,细胞融合后形成典型铺路卵石状排列(图 1B),传代培养 3 代后细胞呈现衰退迹象,并有凋亡现象出现。免疫组化 EnVision 法检测培养的细胞 CD34 抗原呈阳性反应,细胞膜有明显的阳性染色,细胞核无染色,表明阳性反应细胞存在 CD34 抗原膜抗原(图 2A、2B),证实为内皮细胞。FCM 检测传代培养的细胞 CD34(+)阳性细胞数为76.28%,表明传代后血管瘤内皮细胞纯度较高。

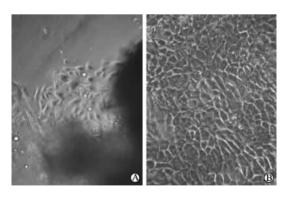


图 1 体外培养的婴幼儿血管瘤内皮细胞

Fig 1 Cultured endothelial cells from infantile hemangioma

A: Endothelial cells grow out from the explants 3 days after embedding; B: After 3 week-culture, endothelial cells exhibit the characteristic cobblestone morphology. Original magnification: ×80

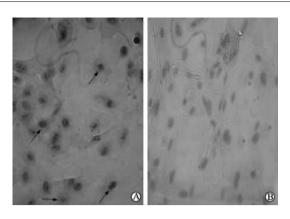


图 2 培养的血管瘤内皮细胞免疫组化鉴定(EnVision 法)
Fig 2 Immunohistochemical staining of cultured
endothelial cells from infantile hemangiomas for CD34

A: The blood vascular-specific marker CD34 is positive on cell membrane of cultured cells (Arrows); B: Negative control without specific CD34 antibody. Original magnification: ×200

2.2 FCM 检测血管瘤内皮细胞 Fas、FasL 的表达结果显示:培养的血管瘤内皮细胞 Fas(+)细胞数[(90.97±2.36)%]显著高于阴性对照 HUVEC [(25.07±7.60)%,P<0.01],与阳性对照 Jurkat细胞数[(93.87±1.64)%]无显著差异(P>0.05),表明培养的血管瘤内皮细胞 Fas 呈高表达。而FasL(+)细胞数在3种细胞中均很低,分别为(1.88±0.77)%、(4.17±1.75)%和(4.45±0.50)%,没有生物学意义。

2.3 FQ-PCR 检测血管瘤内皮细胞的 Fas mRNA、FasL mRNA 表达 结果显示:血管瘤内皮细胞 Fas mRNA的 $2^{-\Delta\Delta CT}$ 平均值为 (1.26 ± 0.72) ;与阳性对照 Jurkat 细胞 (1.448 ± 0.059) 的比值为 0.87,差异无显著性(P>0.05);与阴性对照 HUVEC (0.354 ± 0.170) 的比值为 3.56,差异具显著性(P<0.01)。血管瘤内皮细胞 FasL mRNA的 $2^{-\Delta\Delta CT}$ 平均值为 (0.038 ± 0.022) ,与 Jurkat 细胞 (0.044 ± 0.023) 和 HUVEC (0.022 ± 0.011) 比值分别为 0.86、1.73,差异均无显著性(P>0.05)。

3 讨论

1982年,Mulliken等^[4]首先报道采用组织块体外成功培养血管瘤内皮细胞,但到目前为止血管瘤内皮细胞还没有成熟的培养方法。通过分析组织块法培养血管瘤内皮细胞发现,瘤体被包裹或分散于纤维脂肪组织中,如果不清除瘤体外的纤维脂肪组织,要培养纯净的血管瘤内皮细胞较困难。因此在组织块接种之前,使用胰蛋白酶消化纤维脂肪组织,将消化后的瘤体组织接种至细胞培养皿培养,这样

处理后的组织块培养的血管瘤内皮细胞纯度较高。

文献^[5]报道肝素具有促进内皮细胞生长和抑制成纤维细胞的作用,因此在组织块接种后,使用含肝素的内皮细胞培养液,可以抑制成纤维细胞生长和促进内皮细胞爬出,提高内皮细胞的纯度。

组织块接种后 48~72 h,内皮细胞开始游出, 3~5 d内皮细胞大量游出,而成纤维细胞一般在接种后 1 周左右游出,5 d 左右去除组织块,可以避免成纤维细胞的污染。

最后在相差显微镜下根据内皮细胞的形态标记内皮细胞,采用机械刮除法刮除非内皮细胞形态的杂细胞,通过上述措施可以显著提高原代培养的内皮细胞纯度,内皮细胞融合后形成典型的铺路石样,细胞长满培养皿后,即可传代培养,传代后的细胞免疫组化 CD34 抗原检测为阳性反应,证实培养的细胞为内皮细胞。

Fas 为非特异性抗原分子,在人体组织和细胞 中都可表达或经激活诱导表达,在胸腺、肝脏、心脏、 肾脏、卵巢、子宫、皮肤以及激活的 T 淋巴细胞、B 淋 巴细胞、淋巴瘤细胞、白血病细胞、造血系统细胞中 广泛存在。许多自身免疫性疾病、病毒感染和肿瘤 发生都和 Fas 系统的异常相关,细胞 Fas 表达增加, 使得细胞凋亡率增加。研究发现婴幼儿血管瘤组织 中 Fas 和 FasL 表达增加[1],尤其是在增殖晚期和消 退早期的血管瘤组织中,Fas 和 FasL 表达最显著, Fas 和 FasL 是一对和死亡受体通路相关的细胞膜 表面分子, Fas 和 FasL 在血管瘤组织中表达的增 加,提示血管瘤的消退可能与 Fas 和 FasL 介导的细 胞凋亡相关。研究显示,Fas 在 Jurkat 细胞中表达 量很高[6],正常人脐静脉内皮细胞 Fas 表达量很 低,通过某种因子(如 IFN-y)刺激后的人脐静脉内 皮细胞 Fas 表达量可明显增加[7],因此实验中我们 采用 Jurkat 细胞中的 Fas 表达量作阳性对照,正常 人脐静脉内皮细胞 Fas 表达量作阴性对照,实验结 果显示,培养的血管瘤内皮细胞 Fas(+)细胞数量 达(90,97±2,36)%,与阳性对照细胞 Fas 表达量接 近,显著高于阴性对照细胞 Fas 表达量,血管瘤内皮 细胞高表达 Fas 蛋白,提示血管瘤内皮细胞的凋亡 可能与 Fas/FasL 相关。

FasL 是 Fas 在体内的天然配体,属 TNF 家族的细胞表面分子,FasL 主要表达于激活的 T 细胞、

NK细胞、LAK细胞、部分肿瘤细胞以及一些免疫豁免区如眼前房、睾丸滋养细胞表面等。体外培养的婴幼儿血管瘤内皮细胞 FasL表达水平很低,而且阳性对照 Jurkat细胞和阴性对照脐静脉内皮细胞的 FasL表达水平均低,提示 FasL不在上述细胞中表达。研究^[8]显示,血管瘤组织的 T淋巴细胞随着血管瘤的演变发生相应的变化,随着血管瘤的增殖,瘤体中成熟 T细胞和辅助性 T细胞(Th)、细胞毒性 T细胞、树突状 T细胞逐渐增多,在血管瘤增殖晚期和消退早期 T细胞数量达到高峰。而激活的 T细胞能够表达 FasL,因此婴幼儿血管瘤的消退可能是内皮细胞高表达的 Fas 蛋白与 T细胞表面的FasL结合,启动细胞凋亡程序,引起内皮细胞凋亡,从而导致血管瘤消退。

[参考文献]

- [1] 邢 新,袁斯明,欧阳天祥,陆 斌,倪灿荣,杨志勇. Fas/FasL在各阶段婴幼儿血管瘤中的表达及意义[J]. 中华整形外科杂志,2006,22:116-120.
- [2] 洪 莉,肖现民,盛民立,韩承新,姜雅梅.增生期血管瘤血管内 皮细胞培养[J].上海医科大学学报,1999,26,65-69.
- [3] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and 2^{-ΔΔCT} method[J]. Methods, 2001, 25:402-408.
- [4] Mulliken J B, Zetter B R, Folkman J. In vitro characteristics of endothelium from hemangiomas and vascular malformations [J]. Surgery, 1982, 92:348-353.
- [5] Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis[J]. Cytokine Growth Factor Rev, 2005, 16:159-178.
- [6] Lautrette C, Loum-Ribot E, Petit D, Vermot-Desroches C, Wijdenes J, Jauberteau M O. Increase of Fas-induced apoptosis by inhibition of extracellular phosphorylation of Fas receptor in Jurkat cell line[J]. Apoptosis, 2006, 11:1195-1204.
- [7] Li J H.Kluger M S, Madge L A, Zheng L, Bothwell A L, Pober J S. Interferon-augments CD95 (APO-1/Fas) and procaspase-8 expression and sensitizes human vascular endothelial cells to CD95-mediated apoptosis [J]. Am J Pathol, 2002, 161: 1485-1495
- [8] 袁斯明,姜会庆,欧阳天祥,邢 新. 免疫细胞在婴幼儿血管瘤组织中的分布及其变化[J]. 医学研究生学报,2007,20;720-722,后插 5.

「本文编辑] 尹 茶