DOI: 10.16781/j.CN31-2187/R.20230778

基于 miRNA-134-5p/BDNF/Akt 信号通路探讨 X 线辐射致大鼠心肌细胞 凋亡的机制

顾 静^{1*},付力文¹,韩晓斐¹,方 丹¹,金 戈¹,董晓雨¹,颉亚辉²,侯 敏³
1.甘肃中医药大学基础医学院生理学教研室,兰州 730000
2.甘肃中医药大学公共卫生学院数学与卫生统计学教研室,兰州 730000
3.甘肃中医药大学基础医学院解剖学与组织胚胎学教研室,兰州 730000

[摘要] 頁 6 探讨X线辐射对大鼠心肌细胞凋亡的影响及相关机制。方法 将大鼠 H9C2 心肌细胞分为空 白对照组、X线照射组(X-ray组)、X线照射 miRNA-134-5p 抑制剂组(X-inhibitor组)、X线照射 miRNA-134-5p 抑制剂阴性对照组(X-NC组)。最终选择以 6 Gy X线辐照大鼠 H9C2 心肌细胞, 48 h 后检测各项指标变化。采用 CCK-8 法检测细胞存活率,用流式细胞术和 Hoechst 33342 染色检测细胞凋亡率,用 DCFH-DA 荧光探针法检测细胞 内活性氧(ROS)水平,用 JC-1 法检测细胞线粒体膜电位变化,用超氧化物歧化酶(SOD)和丙二醛(MDA)检测 试剂盒分别测定细胞中 SOD 活性、MDA 水平,用 qPCR 法检测细胞中 miRNA-134-5p 表达,用蛋白质印迹法检测细 胞中脑源性神经营养因子(BDNF)、Akt、磷酸化Akt(p-Akt)、Bcl2、Bax蛋白的表达。结果 与空白对照组相比,X-ray 组大鼠心肌细胞中 ROS 和 MDA 水平上升、SOD 活性下降、线粒体膜电位下降百分比增加、DNA 损伤微核形成数增 加、细胞凋亡率升高(均P<0.01);与X-ray组相比,X-inhibitor组上述各项指标均有所逆转(P<0.05或P<0.01), 而X-NC组的以上各指标差异均无统计学意义(均P>0.05)。与空白对照组相比,X-ray组和134-5p 水平上调,BDNF表达及 Bcl2/Bax、p-Akt/Akt 比值升高(均P<0.01),X-NC 组各项指标差异均无统计学意义(均P>0.05)。5 经本 X线照射诱导了大鼠心肌细胞发生氧化应激、线粒体损伤及 DNA 损 伤,最终导致细胞凋亡,其发生机制可能涉及 miRNA-134-5p/BDNF/Akt 信号通路。

[关键词] 放射性心脏损伤;辐射;心肌细胞;微RNA-134-5p;细胞凋亡

[引用本文] 顾静,付力文,韩晓斐,等.基于miRNA-134-5p/BDNF/Akt信号通路探讨X线辐射致大鼠心肌细胞凋 亡的机制[J].海军军医大学学报,2024,45(11):1352-1361.DOI: 10.16781/j.CN31-2187/R.20230778.

Mechanism of X-ray radiation-induced rat myocardial cell apoptosis based on miRNA-134-5p/BDNF/Akt signaling pathway

GU Jing^{1*}, FU Liwen¹, HAN Xiaofei¹, FANG Dan¹, JIN Ge¹, DONG Xiaoli¹, XIE Yahui², HOU Min³

1. Department of Physiology, Basic Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China

2. Department of Mathematics and Health Statistics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China

3. Department of Anatomy and Histoembryology, Basic Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China

[Abstract] Objective To investigate the effect of radiation on cardiomyocyte apoptosis and its related mechanism. Methods Rat H9C2 cardiomyocytes were divided into blank control group, X-ray irradiation group (X-ray group), X-ray irradiation+microRNA (miRNA)-134-5p inhibitor group (X-inhibitor group) and X-ray irradiation+miRNA-134-5p inhibitor negative control group (X-NC group). H9C2 cardiomyocytes were irradiated with 6 Gy X-ray, and the changes of various indexes were detected 48 h after irradiation. Cell viability was detected by cell counting kit 8 assay. The apoptosis rate was

[作者简介] 顾 静,博士,副教授,硕士生导师.

[[]收稿日期] 2023-12-29 [接受日期] 2024-05-07

[[]基金项目] 国家自然科学基金(82360878),甘肃省中医药管理局重点项目(GZKZ-2020-10). Supported by National Natural Science Foundation of China (82360878) and Key Project of Traditional Chinese Medicine Administration of Gansu Province (GZKZ-2020-10).

^{*}通信作者(Corresponding author). Tel: 0931-5161248, E-mail: 120233234@qq.com

detected by flow cytometry and Hoechst 33342 staining. The level of reactive oxygen species (ROS) in cells was detected by DCFH-DA fluorescence probe. The mitochondrial membrane potential was detected by JC-1 method. The activity of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cells were measured by kits. The expression of miRNA-134-5p was detected by quantitative polymerase chain reaction. The protein expression of brain-derived neurotrophic factor (BDNF), protein kinase B (Akt), phosphorylated Akt (p-Akt), Bcl2 and Bax was detected by Western blotting. Results Compared with the blank control group, in the X-ray group the levels of ROS and MDA were significantly increased, the activity of SOD was significantly decreased, the decreased percentage in mitochondrial membrane potential was significantly increased, the number of micronuclei of DNA damage was significantly increased, and the apoptosis rate was significantly increased (all P< 0.01). Compared with the X-ray group, all the indexes of the X-inhibitor group were reversed (P < 0.05 or P < 0.01), while there was no significant difference in the above parameters in the X-NC group (all P > 0.05). Compared with the blank control group, the X-ray group had a significant increase in the miRNA-134-5p level and significant reductions in the protein level of BDNF, Bcl2/Bax ratio, and p-Akt/Akt ratio (all $P \le 0.01$). Compared with the X-ray group, the X-inhibitor group had a significant reduction in the level of miRNA-134-5p and significant increases in the protein level of BDNF, Bcl2/ Bax ratio, and p-Akt/Akt ratio (all $P \le 0.01$), and there was no significant difference in all parameters in the X-NC group (all P>0.05). Conclusion X-ray irradiation can induce oxidative stress, mitochondrial damage, and DNA damage, eventually leading to apoptosis in rat cardiomyocytes, and the mechanism may involve miRNA-134-5p/BDNF/Akt signaling pathway.

[Key words] radiation-induced heart damage; radiation; cardiomyocytes; microRNA-134-5p; apoptosis

[Citation] GU J, FU L, HAN X, et al. Mechanism of X-ray radiation-induced rat myocardial cell apoptosis based on miRNA-134-5p/BDNF/Akt signaling pathway[J]. Acad J Naval Med Univ, 2024, 45(11): 1352-1361. DOI: 10.16781/j.CN31-2187/R.20230778.

放射性心脏损伤 (radiation-induced heart damage, RIHD) 是由辐射诱发的心脏损伤, 是肿瘤患者放 疗后最为严重的并发症之一, 其主要表现为心包 炎、心肌病、心脏瓣膜病、冠状动脉疾病、传导系 统异常等心血管疾病^[1];在发病过程中心脏逐渐 发生病理性纤维化并伴随心肌细胞凋亡^[2]。由于 心肌细胞没有再生能力, 一旦过度凋亡, 心脏必然 会出现不可逆损伤。在心脏发育缺陷、缺血性心脏 病、动脉粥样硬化、心肌病和心力衰竭等诸多心脏 疾病中均可观察到心肌细胞凋亡^[3]。

心肌细胞凋亡的发生机制主要涉及蛋白质寡 聚化、蛋白质构象变化、瞬时蛋白质相互作用、蛋 白质易位等^[4],但随着 miRNA 的发现,有研究证 实 miRNA 在心肌细胞凋亡中的作用。研究表明高 浓度葡萄糖能够上调 miRNA-1 的表达,通过靶向 胰岛素样生长因子 1 (insulin-like growth factor 1, IGF-1)诱导大鼠 H9C2 心肌细胞发生凋亡^[5]。 另有研究显示,在心脏缺血再灌注(ischemiareperfusion, I/R)损伤小鼠中 miRNA-208 表达的下 调有效促进了心肌细胞中活性氧(reactive oxygen species, ROS)的产生,同时通过靶向 p21 增加心 肌细胞凋亡,以上 2 种变化共同加剧了心肌细胞凋 亡,从而加重了心肌组织损伤^[6]。miRNA 是一类 长 20~22 个核苷酸残基的内源性非编码单链 RNA^[7],在细胞内稳定表达、含量丰富,且在不同物种之间高度保守。作为一种具有广泛调控功能的内源性非编码 RNA,miRNA 通过与靶 mRNA 的 3'-非翻译区碱基配对,在转录后水平调控基因表达,诱导 mRNA 降解或抑制蛋白质翻译^[8]。miRNA 广泛存在于心肌组织中,参与急性心肌梗死(acute myocardial infarction, AMI)等多种心血管疾病的病理生理过程^[9-10],实验证明 miRNA 可通过调控相关靶基因表达促进或抑制心肌细胞凋亡^[11-13]。

本课题组前期通过外泌体测序发现X线照射 可诱导miRNA-134-5p表达上调^[14],并通过生物信 息学分析预测发现其靶基因可能为脑源性神经营养 因子(brain-derived neurotrophic factor, *BDNF*), 而 BDNF 通过调控下游 Akt 信号通路启动线粒体 途径的细胞凋亡通路^[15]。基于此,本研究探讨了 miRNA-134-5p/BDNF/Akt 信号通路在X线辐射致 大鼠心肌细胞损伤中的作用。

1 材料和方法

1.1 细胞、试剂与仪器 大鼠 H9C2 心肌细胞购自 苏州海星生物科技有限公司。高糖 DMEM 购自美 国 HyClone 公司; FBS 购自苏州依科赛生物科技 股份有限公司; CCK-8 检测试剂盒、总RNA提 取试剂盒均购自翌圣生物科技(上海)股份有限 公司; 细胞凋亡检测试剂盒购自杭州联科生物技 术股份有限公司;青-链霉素混合液、线粒体膜 电位检测试剂盒、Hoechst 33342 染色液、吉姆萨 染色液均购自北京索莱宝科技有限公司; ROS 检 测试剂盒购自大连美仑生物技术有限公司;丙二 醛(malondialdehyde, MDA)、超氧化物歧化酶 (superoxide dismutase, SOD) 检测试剂盒均购 自南京建成生物工程研究所; 大鼠 BDNF 单克隆 抗体购自美国GeneTex公司; 大鼠GAPDH单克 隆抗体、大鼠 Akt 单克隆抗体、大鼠磷酸化的 Akt (phosphorylated Akt, p-Akt) 单克隆抗体、大 鼠 Bcl2 单克隆抗体、大鼠 Bax 单克隆抗体均购自 美国 ImmunoWay 公司; miRNA-134-5p 抑制剂和 miRNA-134-5p抑制剂阴性对照均购自广州锐博生 物技术有限公司。

生物辐照仪购自美国 Precision X-Ray公司; CO₂恒温培养箱购自天津市莱玻特瑞仪器设备有 限公司;化学发光成像系统购自美国 Azure 公司; SpectraMax 酶标检测仪购自美谷分子仪器(上海) 有限公司;Olympus IX53 倒置荧光显微镜购自上 海普赫光电科技有限公司;NanoFCM 纳米流式检 测仪购自厦门福流生物科技有限公司;LightCycler 96 实时荧光定量 PCR 仪购自瑞士 Roche 公司。

1.2 细胞培养 在 37 ℃、5% CO₂ 及饱和湿度条 件下,将大鼠 H9C2 心肌细胞置于含 10% FBS、 1% 青-链霉素混合液的高糖 DMEM 中进行培养。 用胰蛋白酶 -EDTA 消化液(含 0.25% 胰蛋白酶和 0.02% EDTA)消化细胞,后加入完全培养基终止 消化,轻轻吹打混匀细胞后传代培养。

1.3 细胞照射及分组 细胞照射在甘肃中医药大 学生物辐照检测室进行,用生物辐照仪照射,放射 源中心到细胞照射野中心的距离为48 cm,剂量率 为2 Gy/min,按照0、2、4、6、8、10 Gy X线辐射 剂量完成照射。根据CCK-8 实验结果,结合相关文 献^[16-17]及本课题组前期实验结果,6 Gy X线辐照剂 量为建立细胞损伤模型的最佳辐照剂量,因此采用 6 Gy X线辐照剂量作为本实验的辐照干预剂量。

细胞分为4组:(1)空白对照组;(2)X线 照射组(X-ray组),即按照预先筛选的X线照射 方案照射的H9C2细胞;(3)X线照射miRNA- 134-5p 抑制剂组(X-inhibitor 组),即X线照射转染 miRNA-134-5p 抑制剂的H9C2 细胞;(4) X 线照射 miRNA-134-5p 抑制剂阴性对照组(X-NC 组),即X线照射转染 miRNA-134-5p 抑制剂阴性 对照的H9C2 细胞。

1.4 CCK-8 法检测大鼠心肌细胞存活情况 取对数生长期的大鼠 H9C2 心肌细胞,将细胞接种于96 孔板,每组 8 个复孔,培养 24 h,等待细胞贴壁。按照 0、2、4、6、8、10 Gy X 线辐照剂量照射细胞,分别于照射后 6、12、24、48、72 h 用酶标仪检测450 nm 处的光密度值(D),计算细胞存活率。细胞存活率(%) = [($D_{ggat} - D_{gelt}$)/($D_{Mgt} - D_{gelt}$)]×100%。

1.5 大鼠心肌细胞凋亡检测 (1) 膜联蛋白 V-FITC/PI 双染流式细胞实验。将大鼠 H9C2 心肌 细胞接种于 6 孔板中,按 1.3 项分组干预后消化 并收集细胞,用预冷 PBS 离心洗涤 2~3 次,各加 入适量结合缓冲液重悬。每组加入 5 μL 膜联蛋白 V -FITC 和 10 μL PI 染色,轻柔涡旋混匀,室温避 光孵育 5 min,采用流式细胞仪检测心肌细胞凋亡 情况。

(2) Hoechst 33342 染色实验。将大鼠 H9C2 心肌细胞接种于 24 孔板,按 1.3 项分组干预后 加入适量 Hoechst 33342 工作液,37 ℃ 孵育 20~30 min,用 PBS 洗 2~3 次,每次 3~5 min,在荧光显微镜下拍照。

1.6 微核试验检测大鼠心肌细胞 DNA 损伤 将大鼠 H9C2 心肌细胞接种于 6 孔板,按 1.3 项分组干预后收集细胞,加入适量 0.075% 氯化钾溶液混匀 1 min,再加入适量固定液(甲醇:冰醋酸按 3 : 1 体积比配制,现配现用) 吹匀,160.992×g离心 10 min,弃上清;加入 5 mL 固定液吹匀,静置 20~30 min,160.992×g离心 10 min,弃上清;加入适量固定液重悬,将细胞重悬液滴至载玻片上晾干,滴加适量吉姆萨工作液染色 20 min,纯水冲洗晾干后置于显微镜下观察,随机选取视野,每组计数 1 000 个细胞×3 次,计算细胞微核数量。

1.7 大鼠心肌细胞线粒体膜电位检测 将大鼠
H9C2 心肌细胞接种于 6 孔板,按 1.3 项分组干预
后消化并收集细胞,重悬于 500 μL 完全培养基中,
再加入 500 μL JC-1 染色工作液,颠倒数次混匀;
37 ℃避光孵育 20 min 后,4 ℃ 600×g 离心 3~

4 min, 弃上清; 加入 JC-1 染色缓冲液洗涤 2 次,
4 ℃ 600×g 离心 3~4 min, 弃上清; 加入适量
JC-1 染色缓冲液重悬, 采用流式细胞仪检测。

1.8 大鼠心肌细胞氧化应激检测 (1) ROS 检测。将大鼠H9C2心肌细胞接种于6孔板,按1.3 项 分组干预后消化并收集细胞,重悬于适当体 积的DCFH-DA工作液;37 ℃ 避光孵育20~ 30 min,其间颠倒数次混匀,111.8×g离心5 min 后弃上清;加入适量无血清培养基洗涤细胞3次, 111.8×g离心5 min 后弃上清;加入适量PBS重悬, 采用流式细胞仪检测。

(2) MDA、SOD 检测。按 1.3 项分组干预细胞,消化并收集细胞;按照 MDA、SOD 检测试剂 盒操作步骤,用硫代巴比妥酸法检测细胞中 MDA 水平,用水溶性四氮唑法检测 SOD 活性。

1.9 qPCR 法检测大鼠心肌细胞中miRNA-134-5p 的表达 收集各组大鼠 H9C2 心肌细胞,提取总 RNA,超微量分光光度法测定其纯度和浓度,使用 Bulge-Loop[™] miRNA qRT-PCR Starter Kit (广州锐 博生物技术有限公司)反转录得到 cDNA,将其与 广州锐博生物技术有限公司配套内参、miRNA-14-5p 引物共同加入扩增体系,使用 LightCycler 96 实 时荧光定量 PCR 仪进行检测分析。 1.10 蛋白质印迹法检测大鼠心肌细胞中BDNF、 Akt、p-Akt、Bcl2、Bax蛋白的表达 按1.3 项将细 胞分组干预后收集细胞,分别加入 250 µL RIPA 裂 解液,4℃裂解 30 min,使用细胞刮刀收集细胞 裂解液,111.8×g离心 5 min并收取上清液,使 用BCA法对蛋白进行定量后将蛋白配平并煮沸变 性。蛋白经电泳、转膜、封闭、孵育一抗和二抗 后,滴加曝光液,置于凝胶成像仪曝光,用ImageJ 软件检测曝光后蛋白条带的灰度值。

1.11 统计学处理 应用 GraphPad Prism 8.0 软件 进行数据处理,数据以 $\bar{x}\pm s$ 示,多组间比较采用重 复测量方差分析。检验水准(α)为 0.05。

2 结 果

2.1 大鼠心肌细胞照射剂量及观察时间点的确定 CCK-8 法检测结果(表1)表明,不同剂量的X线辐射对 大鼠心肌细胞的存活均有一定的抑制效应,且这种 抑制效应呈一定的剂量-时间依赖性,差异有统计 学意义(P<0.05)。辐射剂量为6Gy、培养48h 时,细胞存活率为0.76±0.01。基于实验结果并结 合文献^[16-17],本实验最终选择6Gy为X线照射大 鼠 H9C2 心肌细胞的最佳剂量,照射后48h为指标 检测时间点。

表 1 不同剂量 X 线照射对大鼠 H9C2 心肌细胞存活的影响 Tab 1 Effect of different doses of X-ray irradiation on survival of rat H9C2 cardiomyocytes

 $n=3, \bar{x}+s$

					$n s, n \ge s$		
Irradiation dose/Gy -	Duration after X-ray irradiation/h						
	6	12	24	48	72		
0	1.00 ± 0.01	1.00 ± 0.01	1.00 ± 0.01	1.00 ± 0.02	1.00 ± 0.02		
2	0.99 ± 0.03	0.92 ± 0.07	$0.96 \pm 0.03^{*}$	$0.92 \pm 0.01^{**}$	$0.83 \pm 0.01^{**}$		
4	0.98 ± 0.03	1.01 ± 0.01	1.02 ± 0.01	$0.87 \pm 0.03^{**}$	$0.78 \pm 0.01^{**}$		
6	1.00 ± 0.01	1.01 ± 0.02	$0.93 \pm 0.01^{**}$	$0.76 \pm 0.01^{**}$	$0.64 \pm 0.01^{**}$		
8	0.96 ± 0.01	$0.81 \pm 0.13^{**}$	$0.91 \pm 0.03^{**}$	$0.72 \pm 0.02^{**}$	$0.58 \pm 0.01^{**}$		
10	0.96 ± 0.09	0.92 ± 0.08	$0.94 \pm 0.02^{**}$	$0.72 \pm 0.04^{**}$	$0.58 \pm 0.02^{**}$		

 $^*P < 0.05, ^{**}P < 0.01$ vs 0 Gy group.

2.2 X线照射对大鼠心肌细胞凋亡的影响 膜联蛋白V-FITC/PI 双染流式细胞术检测结果显示,与空白 对照组[(11.53±3.01)%]相比,X-ray组大鼠 H9C2心肌细胞凋亡率[(64.92±13.18)%]增加 约463%(P<0.01);与X-ray组相比,X-NC组 心肌细胞凋亡率[(63.50±19.45)%]差异无统计 学意义(P>0.05),而X-inhibitor组心肌细胞凋 亡率[(20.97±1.67)%]减少约68%(P<0.05)。 Hoechst 33342 染色(图1)结果显示,空白对 照组细胞核染色均匀,细胞核形态规则,细胞荧光 强度为 21.36±1.67; X-ray 组的部分细胞核凝聚固 缩,染色致密呈亮蓝色,与空白对照组相比,荧光 强度增高(28.63±0.59, *P*<0.01);与X-ray 组相比, X-NC 组细胞荧光强度(27.42±0.77)差异无统计 学意义(*P*>0.05),而X-inhibitor 组细胞荧光强 度(23.25±0.77)降低(*P*<0.01)。

图 1 Hoechst 33342 染色检测各组大鼠 H9C2 心肌细胞凋亡情况(10×)

Fig 1 Apoptosis of rat H9C2 cardiomyocytes in each group detected by Hoechst 33342 staining ($10 \times$)

A: Blank control group; B: X-ray irradiation (X-ray) group; C: X-ray irradiation+miRNA-134-5p inhibitor (X-inhibitor) group; D: X-ray irradiation+miRNA-134-5p inhibitor negative control (X-NC) group. miRNA: MicroRNA.

2.3 大鼠心肌细胞 DNA 的损伤情况 在各组中随机选取1000个大鼠 H9C2 心肌细胞进行镜下观察(图2),结果显示空白对照组、X-ray组、X-inhibitor 组及 X-NC 组细胞内的微核形成数分别为(71±23)、(767±70)、(316±63)及(728±31)

个,与空白对照组相比,X-ray组细胞内微核形成数增加约980%(P<0.01);与X-ray照射组相比,X-NC组细胞内微核形成数差异无统计学意义(P>0.05),而X-inhibitor组细胞内微核形成数减少约59%(P<0.01)。

A: Blank control group; B: X-ray irradiation (X-ray) group; C: X-ray irradiation+miRNA-134-5p inhibitor (X-inhibitor) group; D: X-ray irradiation+miRNA-134-5p inhibitor negative control (X-NC) group. The arrows indicate the micronucleus in the cells. miRNA: MicroRNA.

2.4 X线照射对大鼠心肌细胞线粒体膜电位的影响 大鼠H9C2心肌细胞线粒体膜电位下降百分比检测结果(图3)显示,与空白对照组[(14.57±1.36)%]相比,X-ray组心肌细胞线粒体膜电位下降百分比[(54.33±0.46)%]增加了约273%(P<0.01);与X-ray组相比,X-NC组心肌细胞线粒体膜电位下降百分比[(53.30±3.36)%]差异无统计学意义(P>0.05),X-inhibitor组心肌细胞线粒体膜电位下降百分比[(30.20±5.20)%]降低了约44%(P<0.01)。</p>

2.5 X线照射对大鼠心肌细胞氧化应激的影响 ROS 检测结果显示,空白对照组、X-ray组、X-inhibitor 组及X-NC组大鼠H9C2心肌细胞ROS水平分别 为188.67±51.73、502.33±20.03、278.67±7.51及 484.00±59.41。与空白对照组相比,X-ray组受到 X线辐照后ROS水平上升(P<0.01);与X-ray 组相比, X-NC 组大鼠心肌细胞 ROS 水平差异无统 计学意义(P>0.05), X-inhibitor 组大鼠心肌细 胞 ROS 水平下降(P<0.01)。

MDA 检测结果显示,空白对照组、X-ray 组、X-inhibitor组及X-NC组大鼠H9C2心肌细胞 MDA 水平(单位为nmol/mg)分别为 0.22 ± 0.05 、 1.23 ± 0.22 、 0.54 ± 0.04 、 1.11 ± 0.22 ; SOD 检测结 果显示,空白对照组、X-ray组、X-inhibitor组及X-NC 组大鼠H9C2心肌细胞SOD活性(单位为U/mL) 分别为 153.21 ± 5.82 、 118.54 ± 8.03 、 137.23 ± 2.65 、 112.20 ± 3.33 。与空白对照组相比,X-ray组大鼠心 肌细胞的MDA 水平升高、SOD活性下降(均P< 0.01);与X-ray组相比,X-NC组大鼠心肌细胞的 MDA 水平和SOD活性差异均无统计学意义(均P> 0.05),X-inhibitor组大鼠心肌细胞的MDA 水平下 降(P<0.01)、SOD活性升高(P<0.05)。

detected by flow cytometry

A: Blank control group; B: X-ray irradiation (X-ray) group; C: X-ray irradiation+miRNA-134-5p inhibitor (X-inhibitor) group; D: X-ray irradiation+miRNA-134-5p inhibitor negative control (X-NC) group. miRNA: MicroRNA.

2.6 X线照射对大鼠心肌细胞 miRNA-134-5p 表达 水平的影响 qPCR 检测结果显示, 空白对照组、 X-ray 组、X-inhibitor 组及 X-NC 组大鼠 H9C2 心肌 细胞中miRNA-134-5p表达水平分别为0.30±0.07、 1.00±0.04、0.40±0.10、0.94±0.07。与空白对照 组相比, X-ray组大鼠心肌细胞中miRNA-134-5p 的表达水平增加(P<0.01); 与X-ray组相比, X-NC 组大鼠心肌细胞中miRNA-134-5p的表达水平差异 无统计学意义(P>0.05), X-inhibitor组大鼠心肌 细胞中miRNA-134-5p的表达水平下降(P<0.01)。 2.7 X线照射对大鼠心肌细胞中BDNF、Akt、 p-Akt、Bcl2、Bax 蛋白表达的影响 蛋白质印迹法 检测结果(图4、表2)显示,与空白对照组相比, X-ray 组大鼠 H9C2 心肌细胞中 BDNF 蛋白表达降 低约 43% (P<0.01); 与 X-ray 组相比, X-NC 组 大鼠心肌细胞中 BDNF 蛋白表达的差异无统计学 意义 (P > 0.05), X-inhibitor 组大鼠心肌细胞中 BDNF蛋白表达增加约49%(P<0.01)。

与空白对照组相比,X-ray组大鼠心肌细胞 中p-Akt蛋白表达及p-Akt/Akt比值分别降低约 53%、51%(均P<0.01);与X-ray组相比,X-NC 组大鼠心肌细胞中p-Akt蛋白表达及p-Akt/Akt比 值差异无统计学意义(均P>0.05),X-inhibitor 组大鼠心肌细胞中p-Akt蛋白表达及p-Akt/Akt比 值分别增加约67%、55%(均P<0.01)。结果提示, 与空白对照组相比,X线照射对Akt的蛋白表达 没有明显影响,但可抑制其磷酸化过程导致p-Akt/ Akt比值降低,而抑制miRNA-134-5p后p-Akt/Akt 比值较X-ray组上调。见图4、表2。

X-ray: X-ray irradiation group; X-inhibitor: X-ray irradiation+ miRNA-134-5p inhibitor group; X-NC: X-ray irradiation+ miRNA-134-5p inhibitor negative control group. BDNF: Brain-derived neurotrophic factor; p-Akt: Phosphorylated Akt; Akt: Protein kinase B; Bcl2: B-cell lymphoma gene 2; Bax: Bcl2-associated X; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; miRNA: MicroRNA.

与空白对照组相比, X-ray 组大鼠心肌细胞中 Bcl2 蛋白表达降低约 54%、Bax 蛋白表达增加约 29%(均P<0.01), Bcl2/Bax 比值降低(P<0.01); 与 X-ray 组相比, X-NC 组大鼠心肌细胞中 Bcl2、 Bax 蛋白表达差异无统计学意义(均P>0.05), X-inhibitor 组大鼠心肌细胞中 Bcl2 蛋白表达增加 约 65%、Bax 蛋白表达降低约 16%(均P<0.01), Bcl2/Bax 比值增加(P<0.01)。见图 4、表 2。

. . . _ _

_

	表 2	各组大鼠 H9C2 心	N肌细胞中 BDNF、	Akt, p-Akt,	Bcl2	Bax 蛋白的相对表达量	
Tab 2	Relative expr	ession levels of BDN	NF, Akt, p-Akt, Belz	2, and Bax prot	eins in r	rat H9C2 cardiomyocytes in	each group

							$n=3, \bar{x}\pm s$
Group	BDNF/GAPDH	p-Akt/GAPDH	Akt/GAPDH	p-Akt/Akt	Bcl2/GAPDH	Bax/GAPDH	Bcl2/Bax
BC	1.38 ± 0.03	1.08 ± 0.06	0.99 ± 0.08	1.09 ± 0.05	1.04 ± 0.03	0.80 ± 0.04	1.31 ± 0.06
X-ray	$0.79 \pm 0.06^{**}$	$0.51\!\pm\!0.04^{**}$	0.97 ± 0.06	$0.53\!\pm\!0.07^{**}$	$0.48\!\pm\!0.02^{**}$	$1.03 \pm 0.02^{**}$	$0.47\!\pm\!0.02^{**}$
X-inhibitor	$1.18\pm0.06^{ riangle riangle}$	$0.85\pm0.04^{ riangle}$	1.04 ± 0.06	$0.82\pm0.01^{ riangle}$	$0.79\pm0.02^{ riangle riangle}$	$0.87\pm0.02^{ riangle riangle}$	$0.90\pm0.02^{ riangle riangle}$
X-NC	0.76 ± 0.03	0.56 ± 0.03	0.95 ± 0.03	0.59 ± 0.04	0.45 ± 0.02	1.10 ± 0.04	0.41 ± 0.02

^{**}P < 0.01 vs BC group; $\triangle P < 0.01$ vs X-ray group. BC: Blank control; X-ray: X-ray irradiation group; X-inhibitor: X-ray irradiation+miRNA-134-5p inhibitor group; X-NC: X-ray irradiation+miRNA-134-5p inhibitor negative control group. BDNF: Brain-derived neurotrophic factor; p-Akt: Phosphorylated Akt; Akt: Protein kinase B; Bcl2: B-cell lymphoma gene 2; Bax: Bcl2-associated X; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; miRNA: MicroRNA.

3 讨 论

RIHD 作为肿瘤患者放射治疗的严重并发症之 一,发病前通常具有较长潜伏期,其发生、发展可 能与辐射引起的氧化应激、DNA 损伤、神经-体 液-免疫调节紊乱、miRNA异常表达等有关^[18-20], 是多种复杂信号通路共同作用的结果。本实验采 用CCK-8法进行最佳辐照剂量的筛选,结果提示 X线照射后大鼠H9C2心肌细胞的存活率呈剂量-时间依赖性降低。6 Gy X线照射后 48 h 细胞活性 良好,同时检测发现氧化应激、细胞凋亡明显。朱 贝贝等^[17]研究表明, 6 Gy X线照射可有效诱导大 鼠心肌细胞发生氧化应激、线粒体膜电位下降及 线粒体通路相关的细胞凋亡;韩金晏等^[16]也发现 6 Gy X线照射后大鼠心肌细胞的 Bcl2/Bax 比值发 生变化,辐射诱导的细胞凋亡增加。为此,本实验 最终选择 6 Gy 为 X 线照射大鼠 H9C2 心肌细胞的 剂量,照射后48h为指标检测时间点。虽然临床患 者实际上存在长时间、反复照射的放疗,但在基础 研究中如果多次照射细胞,一方面细胞难以耐受, 可能造成较大的实验误差,降低实验数据的准确性 和实验的可行性;另一方面,放射性损伤有显著的 迟发效应,单次照射后的细胞因子表达变化、DNA 和细胞器损伤、细胞功能受损均能较长时间影响 心脏,促使其发生渐进性病理损害。有理由认为, 单次照射细胞可以满足实验研究的目的和要求,且 简单易行,是多数 RIHD 基础研究者的首选照射方 法。基于上述细胞照射基础,本研究观察到X线 照射可诱发大鼠 H9C2 心肌细胞发生氧化应激、损 伤 DNA 和线粒体, 引起细胞凋亡, miRNA-134-5p/ BDNF/Akt 信号通路参与调控 X 线诱导的心肌细胞

损伤及凋亡。

3.1 X线照射引起的心肌细胞损伤与凋亡

3.1.1 氧化应激损伤与心肌细胞凋亡 氧化应激是 由细胞氧化和抗氧化系统之间的不平衡引起^[21], 与细胞凋亡密切相关。在许多细胞系中,照射后细 胞内 ROS 持续增加, 形成脂质过氧化物 MDA, 细 胞内 MDA 水平的变化反映了整体的脂质过氧化程 度,也间接反映了细胞的损伤程度^[22]。SOD 是一 种重要的抗氧化酶, 也是防止 ROS 增加和脂质过 氧化引起细胞损伤的主要防线^[23]。本实验结果显 示,X线照射提高了受照细胞的ROS和MDA水 平、降低了 SOD 活性, 表明 X 线照射可诱导大鼠 H9C2 心肌细胞发生明显的氧化应激损伤, 加重受 照细胞凋亡;抑制miRNA-134-5p表达后,受照细 胞的氧化应激程度有所减轻,且与各组细胞的凋亡 变化呈相同趋势,证明细胞氧化应激程度与细胞凋 亡之间关系密切。有研究证实X线照射能诱导斑 马鱼胚胎发生氧化应激损伤,并进一步使下游 Bax 及 caspase 家族等凋亡相关基因表达上调,导致受 照斑马鱼胚胎凋亡数量增加^[24],与本实验结果一 致,有力证明X线照射引起的氧化应激损伤参与了 心肌细胞凋亡。此外辐射诱导的过量 ROS 不仅能 破坏 DNA,还损害线粒体功能加剧氧化应激,诱 导细胞凋亡^[25]。

3.1.2 DNA 损伤与心肌细胞凋亡 研究表明 X线 照射加重了受照细胞 DNA 损伤及细胞凋亡^[26]。微 核是一种含有染色质的小体,在细胞质中可见^[27], 是由 DNA 损伤或基因组不稳定引起^[28]。本实验分 别检测了正常大鼠 H9C2 心肌细胞与 X线照射后大 鼠心肌细胞中的微核数量,结果显示,与正常心肌 细胞相比, X线诱导受照心肌细胞微核数量增加, 说明X线照射诱导大鼠心肌细胞发生DNA损伤,同时与受照细胞凋亡率上升的趋势一致,表明X 线可诱导心肌细胞发生DNA损伤,加重心肌细胞 凋亡。

3.1.3 线粒体损伤与心肌细胞凋亡 研究发现,受 射线照射的心肌细胞发生了能量代谢异常、胞内钙 超载、线粒体功能障碍和结构损伤^[29],随后多种 死亡因子、信号通路和效应分子启动心肌细胞凋 亡^[30],其中线粒体功能障碍和不可逆性损伤是细 胞凋亡和坏死的关键环节^[31]。有研究进一步证实, 辐射暴露导致促凋亡蛋白 Bax 表达上调并激活,活 化的 Bax 易位并插入到线粒体外膜^[32-33],加速线 粒体电压依赖性阴离子通道的开放。本实验亦发现 受 X 线照射的心肌细胞线粒体膜电位下降,流式细 胞术及 Hoechst 33342 染色结果表明受照细胞凋亡 比例上升,进一步佐证了 X 线照射会诱导细胞发生 线粒体损伤,加重细胞凋亡。

3.2 miRNA-134-5p/BDNF介导X线照射引起的 心肌细胞损伤和凋亡 本课题组前期通过RNAseq 技术测序发现辐照可引起受照的心肌成纤维细 胞及其辐射旁效应细胞的 miRNA 谱发生改变,表 现为包括miRNA-134-5p在内的多种miRNA表达 上调^[14],本实验进一步检测证实大鼠H9C2心肌 细胞受到X线照射后miRNA-134-5p表达上调。 miRNA-134-5p 是一种对细胞增殖、分化、迁移和 凋亡都必不可少的 miRNA^[34],在心肌梗死小鼠模 型中高表达,抑制 miRNA-134-5p 表达可减少心肌 细胞凋亡^[12], 敲低 miRNA-134-5p 能减轻线粒体 损伤及氧化应激^[13]。另有研究支持 AMI 早期血清 miRNA-134-5p 表达上调,具有潜在诊断价值^[35]。 基于此,本课题组进一步对miRNA-134-5p进行生 物信息学分析,发现miRNA-134-5p/BDNF/Akt信 号通路可能参与调节辐照诱导的心肌细胞凋亡。

BDNF是哺乳动物中枢神经系统中最丰富的神 经营养因子之一,参与心血管疾病的发展^[36-39]。 实验证实miRNA-134-5p可通过转录后调节BDNF 的表达^[40],进而调节主动脉内皮功能^[41]、抑制 心肌细胞凋亡,修复受损心肌^[42]。本实验观察到 转染miRNA-134-5p 抑制剂后,X线诱导的大鼠 H9C2 心肌细胞miRNA-134-5p 高表达被逆转,同 时miRNA-134-5p 的预测靶点BDNF蛋白表达量下 调,表明miRNA-134-5p 抑制剂成功转染进心肌细 胞并抑制 X 线照射诱导的 miRNA-134-5p 的 mRNA 表达上调,减轻心肌细胞的凋亡及相关损伤。

为了解miRNA-134-5p/BDNF对心肌细胞损伤 和凋亡的影响机制, Minichiello^[43]对其下游信号分 子进行了筛选,着重关注 PI3K/Akt 信号通路。辐射 可通过调节 PI3K/Akt 蛋白表达及其磷酸化参与多 种细胞凋亡^[44-45]。Akt磷酸化后作用于下游靶基因 Bad 使其发生磷酸化,阻断 Bad 与 Bcl2 结合,保持 Bcl2 的抗凋亡作用^[46]。有研究表明, miRNA 可通 过激活 PI3K/Akt 通路调控 Bcl2 的表达进而抑制心 肌细胞凋亡,发挥心脏保护功能^[47-50]。本实验发现, X线照射能够上调大鼠心肌细胞内miRNA-134-5p 水平,进而抑制 BDNF 蛋白表达。进一步检测下游 相关指标发现,受miRNA-134-5p调控的BDNF表 达下降后下游Akt信号通路会受到抑制,导致p-Akt 水平降低,下游 Bcl2 蛋白表达减少、Bax 蛋白表达 升高,细胞凋亡比例上升。而转染miRNA-134-5p 抑制剂后受X线照射细胞的BDNF表达上调、p-Akt/ Akt 比值增加, Akt 信号通路被激活, 抑制下游 Bax 活化并提高 Bcl2/Bax 比值,从而使心肌细胞凋亡率 下降。

综上所述,X线照射可促进心肌细胞损伤,其 发生机制与心肌细胞氧化应激、DNA和线粒体损 伤、细胞凋亡等有关。本实验初步观察到DNA损 伤、线粒体损伤、氧化应激损伤均可能参与X线辐 射引起H9C2心肌细胞凋亡,相关机制与miRNA-134-5p/BDNF/Akt信号通路有关。

[参考文献]

- [1] ŠTEINER I. Pathology of radiation induced heart disease[J]. Rep Pract Oncol Radiother, 2020, 25(2): 178-181. DOI: 10.1016/j.rpor.2019.12.015.
- [2] MA C X, ZHAO X K, LI Y D. New therapeutic insights into radiation-induced myocardial fibrosis[J]. Ther Adv Chronic Dis, 2019, 10: 2040622319868383. DOI: 10.1177/2040622319868383.
- XIA P, LIU Y, CHENG Z. Signaling pathways in cardiac myocyte apoptosis[J]. Biomed Res Int, 2016, 2016: 9583268. DOI: 10.1155/2016/9583268.
- [4] SKOMMER J, RANA I, MARQUES F Z, et al. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death[J]. Cell Death Dis, 2014, 5(7): e1325. DOI: 10.1038/cddis.2014.287.
- [5] SHAN Z X, LIN Q X, DENG C Y, et al. MiR-1/ miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes[J].

FEBS Lett, 2010, 584(16): 3592-3600. DOI: 10.1016/ j.febslet.2010.07.027.

- [6] LIU C, ZHENG H, XIE L, et al. Decreased miR-208 induced ischemia myocardial and reperfusion injury by targeting p21[J]. Pharmazie, 2016, 71(12): 719-723. DOI: 10.1691/ph.2016.6740.
- [7] GAO Y, MA H, LV C, et al. Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system[J]. Cancer Lett, 2021, 499: 73-84. DOI: 10.1016/j.canlet.2020.10.049.
- [8] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. DOI: 10.1016/s0092-8674(04)00045-5.
- [9] WOJCIECHOWSKA A, BRANIEWSKA A, KOZAR-KAMIŃSKA K. MicroRNA in cardiovascular biology and disease[J]. Adv Clin Exp Med, 2017, 26(5): 865-874. DOI: 10.17219/acem/62915.
- [10] LIN X, ZHANG S, HUO Z. Serum circulating miR-150 is a predictor of post-acute myocardial infarction heart failure[J]. Int Heart J, 2019, 60(2): 280-286. DOI: 10.1536/ihj.18-306.
- YANG J, LIU S, WANG H, et al. MiR-134-5p inhibition reduces infarct-induced cardiomyocyte apoptosis via Creb1 upregulation[J]. J Stroke Cerebrovasc Dis, 2020, 29(8): 104850. DOI: 10.1016/j.jstrokecerebrovasd is.2020.104850.
- [12] LI X, WEI C, ZHANG Z, et al. MiR-134-5p regulates myocardial apoptosis and angiogenesis by directly targeting KDM2A after myocardial infarction[J]. Int Heart J, 2020, 61(4): 815-821. DOI: 10.1536/ihj.19-468.
- [13] HAO S, SUI X, WANG J, et al. Secretory products from epicardial adipose tissue induce adverse myocardial remodeling after myocardial infarction by promoting reactive oxygen species accumulation[J]. Cell Death Dis, 2021, 12(9): 848. DOI: 10.1038/s41419-021-04111-x.
- [14] 段依璠,顾静,舒亚妃,等.心肌成纤维细胞来源的外 泌体miRNA参与放射性心肌纤维化损伤[J].中国生 物化学与分子生物学报,2023,39(1):108-120. DOI: 10.13865/j.cnki.cjbmb.2022.11.1330.
- [15] HANG P, ZHAO J, SUN L, et al. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats[J]. J Cell Mol Med, 2017, 21(4): 685-696. DOI: 10.1111/jcmm.13012.
- [16] 韩金晏,蒋虎刚,王新强,等.当归红芪超滤物通过调 控P53 表达对H9C2 细胞凋亡的干预效应研究[J].中 华中医药杂志,2023,38(4):1543-1548.
- [17] 朱贝贝,畅艳娜,李应东,等.当归红芪多糖对辐射损伤心肌细胞线粒体凋亡通路的影响[J].北京中医药大学学报,2015,38(1):811-816.DOI: 10.3969/j.issn. 1006-2157.2015.12.004.
- [18] SOLIMAN A F, ANEES L M, IBRAHIM D M. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin

海军军医大学学报 2024年11月,第45卷

or gamma radiation in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2018, 391(8): 819-832. DOI: 10.1007/ s00210-018-1506-4.

- [19] ZHANG P, YANG P, HONG L, et al. Oxidative stress in radiation-induced cardiotoxicity[J]. Oxid Med Cell Longev, 2020, 2020: 3579143. DOI: 10.1155/2020/3579143.
- [20] WANG B, WANG H, ZHANG M, et al. Radiationinduced myocardial fibrosis: mechanisms underlying its pathogenesis and therapeutic strategies[J]. J Cell Mol Med, 2020, 24(14): 7717-7729. DOI: 10.1111/ jcmm.15479.
- [21] HOU X, YANG S, YIN J. Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis[J]. Am J Physiol Cell Physiol, 2019, 316(1): C104-C110. DOI: 10.1152/ajpcell.00313.2018.
- [22] VALKO M, RHODES C J, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stressinduced cancer[J]. Chem Biol Interact, 2006, 160(1): 1-40. DOI: 10.1016/j.cbi.2005.12.009.
- [23] EBADI M, GOVITRAPONG P, SHARMA S, et al. Ubiquinone (coenzyme Q10) and mitochondria in oxidative stress of Parkinson's disease[J]. Biol Signals Recept, 2001, 10(3/4): 224-253. DOI: 10.1159/000046889.
- [24] KARAGÖZ A, BELER M, ALTUN B D, et al. Panoramic dental X-ray exposure leads to oxidative stress, inflammation and apoptosis-mediated developmental defects in zebrafish embryos[J]. J Stomatol Oral Maxillofac Surg, 2023, 124(6S): 101661. DOI: 10.1016/ j.jormas.2023.101661.
- [25] STEPIEN K M, HEATON R, RANKIN S, et al. Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders[J]. J Clin Med, 2017, 6(7): 71. DOI: 10.3390/jcm6070071.
- [26] ZHAO H, ZHUANG Y, LI R, et al. Effects of different doses of X-ray irradiation on cell apoptosis, cell cycle, DNA damage repair and glycolysis in HeLa cells[J]. Oncol Lett, 2019, 17(1): 42-54. DOI: 10.3892/ol.2018.9566.
- [27] FENECH M, MORLEY A A. Measurement of micronuclei in lymphocytes[J]. Mutat Res, 1985, 147(1/2): 29-36.
 DOI: 10.1016/0165-1161(85)90015-9.
- [28] TERRADAS M, MARTÍN M, GENESCÀ A. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis[J]. Arch Toxicol, 2016, 90(11): 2657-2667. DOI: 10.1007/s00204-016-1818-4.
- [29] 张静,彭瑞云,杨蕾蕾,等.AMPK/mTOR通路对微波 辐射引起大鼠心脏损伤和心肌细胞线粒体自噬的调 控作用研究[C]//中国毒理学会第七次全国毒理学大 会暨第八届湖北科技论坛论文集,武汉,2015.
- ZHU H, SUN A. Programmed necrosis in heart disease: molecular mechanisms and clinical implications[J]. J Mol Cell Cardiol, 2018, 116: 125-134. DOI: 10.1016/ j.yjmcc.2018.01.018.

- [31] WANG H, WEI J, ZHENG Q, et al. Radiation-induced heart disease: a review of classification, mechanism and prevention[J]. Int J Biol Sci, 2019, 15(10): 2128-2138. DOI: 10.7150/ijbs.35460.
- [32] AN J, LI P, LI J, et al. ARC is a critical cardiomyocyte survival switch in doxorubicin cardiotoxicity[J]. J Mol Med, 2009, 87(4): 401-410. DOI: 10.1007/s00109-008-0434-z.
- [33] SALATA C, FERREIRA-MACHADO S C, DE ANDRADE C B, et al. Apoptosis induction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy[J]. Int J Radiat Biol, 2014, 90(4): 284-290. DOI: 10.3109/09553002.2014.887869.
- [34] WANG Y, DONG C Q, PENG G Y, et al. MicroRNA-134-5p regulates media degeneration through inhibiting VSMC phenotypic switch and migration in thoracic aortic dissection[J]. Mol Ther Nucleic Acids, 2019, 16: 284-294. DOI: 10.1016/j.omtn.2019.02.021.
- [35] WANG K J, ZHAO X, LIU Y Z, et al. Circulating miR-19b-3p, miR-134-5p and miR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 38(3): 1015-1029. DOI: 10.1159/000443053.
- [36] OKADA S, YOKOYAMA M, TOKO H, et al. Brainderived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway[J]. Arterioscler Thromb Vasc Biol, 2012, 32(8): 1902-1909. DOI: 10.1161/ATVBAHA.112.248930.
- [37] FENG N, HUKE S, ZHU G, et al. Constitutive BDNF/ TrkB signaling is required for normal cardiac contraction and relaxation[J]. Proc Natl Acad Sci U S A, 2015, 112(6): 1880-1885. DOI: 10.1073/pnas.1417949112.
- [38] FULGENZI G, TOMASSONI-ARDORI F, BABINI L, et al. BDNF modulates heart contraction force and longterm homeostasis through truncated TrkB.T1 receptor activation[J]. J Cell Biol, 2015, 210(6): 1003-1012. DOI: 10.1083/jcb.201502100.
- [39] KERMANI P, RAFII D, JIN D K, et al. Neurotrophins promote revascularization by local recruitment of TrkB⁺ endothelial cells and systemic mobilization of hematopoietic progenitors[J]. J Clin Invest, 2005, 115(3): 653-663. DOI: 10.1172/JCI22655.
- [40] BABY N, ALAGAPPAN N, DHEEN S T, et al. MicroRNA-134-5p inhibition rescues long-term plasticity and synaptic tagging/capture in an Aβ(1-42)induced model of Alzheimer's disease[J]. Aging Cell,

2020, 19(1): e13046. DOI: 10.1111/acel.13046.

- [41] ZHANG Q, XIAO X, ZHENG J, et al. Vildagliptin, a dipeptidyl peptidase-4 inhibitor, attenuated endothelial dysfunction through miRNAs in diabetic rats[J]. Arch Med Sci, 2021, 17(5): 1378-1387. DOI: 10.5114/aoms. 2019.86609.
- [42] HANG P, ZHAO J, CAI B, et al. Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents[J]. Int J Biol Sci, 2015, 11(5): 536-545. DOI: 10.7150/ijbs.10754.
- [43] MINICHIELLO L. TrkB signalling pathways in LTP and learning[J]. Nat Rev Neurosci, 2009, 10(12): 850-860. DOI: 10.1038/nrn2738.
- [44] 赵粉琴,苟雅姣,胡芝霞,等.⁶⁰Coy射线对大鼠性激素 水平以及PI3K/Akt信号通路蛋白表达的影响[J].甘 肃农业大学学报,2021,56(2):31-39. DOI: 0.13432/ j.enki.jgsau.2021.02.005.
- [45] ZHAO W, HU N, DING D, et al. Developmental toxicity and apoptosis in zebrafish embryos induced by low-dose γ-ray irradiation[J]. Environ Sci Pollut Res Int, 2019, 26(4): 3869-3881. DOI: 10.1007/s11356-018-3893-y.
- [46] NICHOLSON K M, ANDERSON N G. The protein kinase B/Akt signalling pathway in human malignancy[J].
 Cell Signal, 2002, 14(5): 381-395. DOI: 10.1016/s0898-6568(01)00271-6.
- [47] CHANG J H, JIN M M, LIU J T. Dexmedetomidine pretreatment protects the heart against apoptosis in ischemia/reperfusion injury in diabetic rats by activating PI3K/Akt signaling *in vivo* and *in vitro*[J]. Biomed Pharmacother, 2020, 127: 110188. DOI: 10.1016/ j.biopha.2020.110188.
- [48] WANG X, PAN J, LIU D, et al. Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway[J]. J Cell Mol Med, 2019, 23(8): 5349-5359. DOI: 10.1111/jcmm.14413.
- [49] ZHANG Z Y, LI Y, LI R, et al. Tetrahydrobiopterin protects against radiation-induced growth inhibition in H9c2 cardiomyocytes[J]. Chin Med J (Engl), 2016, 129(22): 2733-2740. DOI: 10.4103/0366-6999.193455.
- ZHAO Y, WANG H, HE C, et al. Protopanaxadiol and protopanaxatriol ginsenosides can protect against aconitine-induced injury in H9c2 cells by maintaining calcium homeostasis and activating the AKT pathway[J].
 J Cardiovasc Pharmacol, 2021, 78(5): e690-e702. DOI: 10.1097/FJC.000000000001119.