【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 382次   下载 351 本文二维码信息
码上扫一扫!
青少年腰椎间盘突出症的影响因素分析及列线图模型建立
刘青山1,2△,陈滢1△,刘延1,何大为3*
0
(1. 海军军医大学(第二军医大学)研究生院, 上海 200433;
2. 中国人民解放军联勤保障部队北戴河康复疗养中心, 秦皇岛 066199;
3. 海军军医大学(第二军医大学)第一附属医院脊柱外科, 上海 200433
共同第一作者
*通信作者)
摘要:
目的 分析青少年腰椎间盘突出症(ALDH)的危险因素并制定风险量化评估工具。方法 对2010年8月至2021年8月海军军医大学(第二军医大学)第一附属医院75例ALDH青少年患者(病例组)和有腰痛但无ALDH的青少年患者(对照组)的临床资料及影像学资料进行回顾性分析。两组患者均按照7∶3的比例随机分为训练集与验证集,比较训练集病例组与对照组年龄、性别、BMI、职业、腰部外伤史、吸烟史、腰骶移行锥(LSTV)、髂嵴长度与腰5横突长度比值(ICL/L5TP)、小关节突不对称性(FT)、胸椎后凸角(TK)、腰椎前凸角(LL)、骶骨倾斜角(SS)、骨盆入射角(PI)。采用logistic回归模型分析ALDH风险的独立影响因素,并通过R 4.1.3软件绘制量化评估ALDH风险的列线图。分别利用训练集与验证集数据对列线图模型进行内部验证与外部验证,通过ROC曲线、C指数、校准曲线及决策曲线分析列线图模型的价值。结果 训练集中病例组和对照组之间性别、BMI、职业、腰部外伤史、吸烟史、LSTV、ICL/L5TP、FT、LL、SS差异均有统计学意义(均P<0.05);多因素logistic回归模型分析表明腰部外伤史、吸烟史、BMI、ICL/L5TP、FT、LL是ALDH患病风险的独立影响因素(均P<0.05),基于这6个因素建立列线图模型。在训练集与验证集中,该列线图模型对ALDH风险的预测价值较高(AUC值分别为0.980、0.969),且有较高的准确度(C指数分别为0.71、0.76)、校准度(P=0.562、0.985)和临床收益。结论 腰部外伤史、吸烟史、BMI、ICL/L5TP、FT、LL与ALDH风险密切相关,基于这6个因素构建的列线图能用于量化评估ALDH的患病风险。
关键词:  青少年  腰椎间盘突出症  危险因素  评估  列线图  量化工具
DOI:10.16781/j.CN31-2187/R.20240089
投稿时间:2024-01-30修订日期:2024-04-09
基金项目:国家自然科学基金(81572636).
Influencing factors of adolescent lumbar disc herniation and establishment of a nomogram model
LIU Qingshan1,2△,CHEN Ying1△,LIU Yan1,HE Dawei3*
(1. Graduate School, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
2. Beidaihe Rehabilitation and Recuperation Center, Joint Logistics Support Force of PLA, Qinhuangdao 066199, Hebei, China;
3. Department of Spinal Surgery, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
Co-first authors.
* Corresponding author)
Abstract:
Objective To analyze risk factors for adolescent lumbar disc herniation (ALDH) and to develop a tool for quantitative assessment. Methods The clinical data and imaging data of 75 adolescent patients with ALDH (case group) and adolescent patients with low back pain but without ALDH (control group), who were treated in The First Affiliated Hospital of Naval Medical University (Second Military Medical University) from Aug. 2010 to Aug. 2021, were retrospectively analyzed. The patients were randomly divided into training set and validation set according to a ratio of 7∶3 in both groups. Age, gender, body mass index (BMI), occupation, waist trauma, smoking, lumbosacral transitional vertebra (LSTV), ratio of intercrestal line to L5 transverse process (ICL/L5TP), facet tropism (FT), thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and pelvic incidence (PI) were compared between the case group and control group in the training set. Logistic regression model was used to analyze the independent influencing factors of ALDH risk, and a nomogram for quantitative assessment of ALDH risk was plotted by R 4.1.3 software. The training set and validation set data were used for internal validation and external validation of the nomogram model, respectively, and the value of the nomogram model was analyzed by receiver operating characteristic curve, C index, calibration curve, and decision curve. Results Gender, BMI, occupation, waist trauma, smoking, LSTV, ICL/L5TP, FT, LL, and SS were significantly different between the case group and control group in the training set (all P<0.05); multivariate logistic regression analysis showed that waist trauma, smoking, BMI, ICL/L5TP, FT, and LL were independent influencing factors of ALDH risk (all P<0.05); and a nomogram model was established based on these 6 factors. In the training and validation sets, the nomogram model had a high predictive value for ALDH risk (AUC values of 0.980 and 0.969, respectively) with high accuracy (C indexes of 0.71 and 0.76, respectively), calibration (P=0.562 and 0.985, respectively), and clinical benefit. Conclusion Waist trauma, smoking, BMI, ICL/L5TP, FT, and LL are strongly associated with the risk of ALDH, and the nomogram based on these 6 factors can be used to quantitatively assess prevalence risk of ALDH.
Key words:  adolescents  lumbar disc herniation  risk factors  assessment  nomogram  quantitative tools