【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 102次   下载 24 本文二维码信息
码上扫一扫!
急性缺血性脑卒中患者认知功能发展轨迹及其预测因素分析
陈礼静1△,于龙娟2△,李娟3,孔祥静4,储静1*
0
(1. 海军军医大学(第二军医大学)护理系, 上海 200433;
2. 海军军医大学(第二军医大学)第一附属医院脑血管病中心, 上海 200433;
3. 复旦大学附属华山医院护理部, 上海 200040;
4. 中国人民解放军东部战区空军医院护理部, 南京 210001
共同第一作者
*通信作者)
摘要:
目的 探讨急性缺血性脑卒中患者认知功能发展轨迹及其潜在类别的预测因素。方法 采用整群便利抽样法,选取2019年6月至2020年3月于海军军医大学第一附属医院脑血管病中心和中国人民解放军东部战区空军医院卒中中心住院治疗的128例急性缺血性脑卒中患者为研究对象。采用蒙特利尔认知评估量表(MoCA)评估患者的认知功能,于急性住院期收集患者的人口社会学资料、疾病相关资料、认知功能等基线资料,在脑卒中后3、6个月随访评估患者的认知功能。应用潜变量增长混合模型识别认知功能发展轨迹,并采用多元logistic回归模型分析不同发展轨迹类别的预测因素。结果 根据MoCA评分识别出急性缺血性脑卒中患者认知功能发展轨迹的3个潜在类别:高水平认知维持组(98例,76.6%)、低水平认知改善组(20例,15.6%)、中水平认知下降组(10例,7.8%)。多元logistic回归分析显示,受教育年限、婚姻状况、是否有吞咽障碍是急性缺血性脑卒中患者认知功能不同发展轨迹类别的独立预测因素(均P<0.05)。结论 急性缺血性脑卒中患者认知功能发展轨迹存在异质性,医护人员可根据认知功能发展轨迹类别的影响因素进行个体化评估和干预。
关键词:  脑卒中  认知  潜变量增长混合模型  预测因素  潜在类别
DOI:10.16781/j.CN31-2187/R.20240753
投稿时间:2024-11-06修订日期:2024-12-17
基金项目:国家自然科学基金(72104243),中华医学基金会公开竞标项目(22-473),上海市科技创新行动计划医学创新研究专项(23Y31900300).
Development trajectories of cognitive function in patients with acute ischemic stroke and its predictors
CHEN Lijing1△,YU Longjuan2△,LI Juan3,KONG Xiangjing4,CHU Jing1*
(1. School of Nursing, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
2. Neurovascular Center, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China;
3. Department of Nursing, Huashan Hospital, Fudan University, Shanghai 200040, China;
4. Department of Nursing, Air Force Hospital of PLA Eastern Theater Command, Nanjing 210001, Jiangsu, China
Co-first authors.
* Corresponding author)
Abstract:
Objective To explore the development trajectories of cognitive function in patients with acute ischemic stroke and its latent class predictors. Methods Cluster convenience sampling was used to enroll acute ischemic stroke patients (n=128) who were hospitalized in Neurovascular Center of The First Affiliated Hospital of Naval Medical University and Stroke Center of Air Force Hospital of PLA Eastern Theater Command from Jun. 2019 to Mar. 2020. Montreal cognitive assessment (MoCA) was used to assess the cognitive function of the patients, and baseline data (such as demographic data, disease-related data, and cognitive function) were collected during the acute hospitalization period. The cognitive function was assessed 3 and 6 months after stroke. Latent growth mixture modeling was used to identify cognitive function development trajectories, and multiple logistic regression was used to analyze predictors of different classes of development trajectories. Results Three latent classes of cognitive function development trajectories were identified in patients with acute ischemic stroke: high-level cognitive maintenance group (n=98, 76.6%), low-level cognitive improvement group (n=20, 15.6%), and medium-level cognitive decline group (n=10, 7.8%). Multiple logistic regression analysis showed that education level, marital status and dysphagia were independent predictors of cognitive function development trajectories in acute ischemic stroke patients (all P<0.05). Conclusion There is heterogeneity in the development trajectories of cognitive function in acute ischemic stroke patients, and medical staff can conduct personalized evaluation and intervention based on the influencing factors of different classes of cognitive function development trajectories.
Key words:  stroke  cognition  latent growth mixture modeling  predictive factors  latent classes