【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1791次   下载 2835 本文二维码信息
码上扫一扫!
ARIMA模型在涂阳肺结核月发病预测中的应用
杨海琴1,胡代玉2,刘瑛2,王润华1,易静1*
0
(1.重庆医科大学公共卫生与管理学院卫生统计与信息管理学教研室,重庆 400016
2.重庆市结核病防治所,重庆 400020
*通信作者)
摘要:
目的 探讨重庆市涂阳肺结核月发病数随时间的变化规律,为控制和预防肺结核提供科学依据。方法 采用SPSS13.0软件对2005~2009年重庆市涂阳肺结核月发病数资料建立ARIMA模型,利用该模型预测2010年1月~12月的涂阳肺结核月发病数,对模型的短期预测及其效果进行初步评价。结果 建立的ARIMA(1,1,0)×(0,1,1)12模型是拟合重庆市涂阳肺结核月发病数的合适模型,2005~2009年观测值落在拟合值95%的可信区间内,2010年预测值的平均相对误差为6.31%。结论 ARIMA(1,1,0)×(0,1,1)12模型能很好地预测重庆市涂阳肺结核月发病情况,为控制和预防肺结核提供了可靠依据。
关键词:  ARIMA模型  肺结核  预测  发病率
DOI:
投稿时间:2013-03-01修订日期:2013-08-02
基金项目:国家自然科学基金 (30872160),重庆市科委自然科学基金(CSTC,2009BB5415).
Application of ARIMA model in forecasting monthly incidence of smear-positive tuberculosis
YANG Hai-qin1,HU Dai-yu2,LIU Ying2,WANG Run-hua1,YI Jing1*
(1. Department of Health Statistics and Information Management, College of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
2. Department of Chongqing Tuberculosis Prevention, Chongqing 400020, China
*Corresponding author.)
Abstract:
Objective To investigate the variation of the monthly incidence of smear-positive tuberculosis with time in Chongqing, so to provide a scientific evidence for the control and prevention of tuberculosis. Methods Using the SPSS 13.0 software, we established an ARIMA model with the monthly incidence data of smear-positive tuberculosis (2005-2009), and the model was used to forecast the monthly incidence of Jan. 2010 to Dec. 2010. The short-term forecasting efficacy was evaluated. Results The established ARIMA (1,1,0)×(0,1,1)12 model was suitable for forecasting the monthly incidence of smear-positive tuberculosis in Chongqing. The observed values of 2005-2009 were in the 95% confidence interval of the fitted values, and the average relative error of the predictive value was 6.31% for 2010. Conclusion ARIMA (1,1,0)×(0,1,1)12 model can satisfactorily forecast the monthly incidence of smear-positive tuberculosis in Chongqing, which provides a reliable evidence for control and prevention of tuberculosis.
Key words:  ARIMA model  pulmonary tuberculosis  forecasting  incidence