【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1574次   下载 1092 本文二维码信息
码上扫一扫!
荧光光谱分析5种黄连生物碱与蛋白和DNA的作用
杨勇1*,贺凯1,张保顺2,吴方评1,黄军1,李学刚2
0
(1. 怀化医学高等专科学校药学系天然药物化学教研室, 怀化 418000;
2. 西南大学药学院药用资源化学研究所, 重庆 400716
*通信作者)
摘要:
目的 了解5种黄连生物碱(巴马亭、黄连碱、表小檗碱、药根碱和小檗碱)与生物大分子蛋白质和DNA的作用关系及其差异。 方法 将黄连生物碱巴马亭、黄连碱、表小檗碱、药根碱和小檗碱均配成浓度分别为0、1.95×10-6、3.9×10-6、7.8×10-6、1.56×10-5和3.12×10-5 mol/L的PBS稀释液后,分别量取1.5 mL与0.5 mL牛血清白蛋白(BSA,1.10×10-5 mol/L)溶液作用,采用F-4500型荧光分光光度计,在280 nm激发波长条件下扫描300~500 nm范围的荧光发射光谱。将浓度均为0、1.95×10-6、3.9×10-6、7.8×10-6 和1.56×10-5mol/L的5种黄连生物碱PBS稀释液各量取1.5 mL与0.5 mL百分浓度为0.1%的质粒DNA作用后,在368 nm激发波长条件下扫描480~650 nm范围的荧光发射光谱。 结果 5种黄连生物碱对BSA荧光均有很强的淬灭作用,各生物碱之间的荧光淬灭作用差异不大。5种黄连生物碱与质粒DNA作用后,均能增强发射荧光,且各生物碱之间的荧光增强作用差异很大,荧光增强作用由大到小依次为表小檗碱、黄连碱、巴马亭、小檗碱和药根碱,其中,表小檗碱和黄连碱增强作用远大于其余3种黄连生物碱;5种黄连生物碱的最强荧光作用浓度均为7.8×10-6mol/L。 结论 5种黄连生物碱与蛋白和DNA均存在很强的相互作用。5种黄连生物碱与蛋白之间的作用差异较小,与DNA之间的作用差异较大,提示黄连生物碱与DNA的作用强度与其分子结构有关,该类分子中9,10-亚甲二氧基和2,3-二甲氧基结构有利于与DNA作用后的荧光增强作用。
关键词:  黄连生物碱  牛血清白蛋白  质粒DNA  荧光光谱法  相互作用
DOI:10.3724/SP.J.1008.2014.00106
投稿时间:2013-07-03修订日期:2013-08-20
基金项目:科技部“十二五”科技支撑计划项目(2011BAI13B02-1),湖南省科技计划项目(2011FJ3038)。
Fluorescence analysis of interaction between 5 alkaloids from Rhizoma Coptidis with protein and DNA
YANG Yong1*, HE Kai1, ZHANG Bao-shun2, WU Fang-ping1, HUANG Jun1, LI Xue-gang2
(1. Department of Natural Medicine Chemistry, School of Pharmaceutical Science, Huaihua Medical College, Huaihua 418000, Hu’nan, China;
2. Chemistry Institute of Pharmaceutical Resources, School of Pharmaceutical Science, Southwest University, Chongqing 400716, China
*Corresponding author.)
Abstract:
Objective To study the interaction between biomacromolecules (protein and DNA) and different Rhizoma Coptidis alkaloids (palmatine, coptisine, epiberberine, jatrorrhizine and berberine) and the difference among 5 Rhizoma Coptidis alkaloids. Methods Bovine serum albumin (0.5 mL of 1.10×10-5 mol/L) was added to 1.5 mL of each alkaloid of different concentrations (concentrations of palmatine, coptisine, epiberberine, jatrorrhizine and berberine being 0, 1.95×10-6, 3.9×10-6, 7.8×10-6, 1.56×10-5 and 3.12×10-5 mol/L, respectively). The reaction system was shaken and incubated at 37℃ for 1 h, and then the emission spectra of mixed solution were recorded within 300 to 500 nm at 280 nm excitation. Plasmid DNA (0.5 mL of 0.1%) was added to 1.5 mL of each alkaloid with different concentrations (concentrations of palmatine, coptisine, epiberberine, jatrorrhizine and berberine being 0, 1.95×10-6, 3.9×10-6, 7.8×10-6 and 1.56×10-5 mol/L, respectively). The reaction mixture was well shaken, and then the fluorescent emission spectrum was recorded from 480 to 650 nm at 368 nm excitation by an F-4500 fluorescence spectrophotometer. Results All the Rhizoma Coptidis alkaloids in test exhibited similar quenching effect on fluorescence of bovine serum albumin, and they all showed fluorescence enhancing effect on plasmid DNA, and the enhancing effects varied greatly among the five alkaloids, with epiberberine showing the strongest activity, followed by coptisine, palmatine, berberine, and jatrorrhizine in order. The strongest interaction between DNA and five alkaloids were found at the concentration of 7.8×10-6mol/L. Conclusion Strong interaction can be found between Rhizoma Coptidis alkaloids and biomacromolecules including protein and DNA. The interaction of Rhizoma Coptidis alkaloids with plasmid DNA varies greatly among different alkaloids and is similar with bovine serum albumin. 9,10-methylene-dioxy groups and 2,3-dimethoxy groups might have promoted the interaction between alkaloids and DNA.
Key words:  alkaloid from Rhizoma Coptidis  bovine serum albumin  plasmid DNA  fluorescence spectrometry  interactions