【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1519次   下载 1271 本文二维码信息
码上扫一扫!
基于网格的运动统计特征配准算法在医疗服务机器人中的应用
杨晶东*,单体展
0
(上海理工大学光电信息与计算机工程学院自主机器人研究室, 上海 200093
*通信作者)
摘要:
目的 针对医疗服务机器人目标识别中特征匹配准确率低、实时性差等问题,提出一种基于评分框架的基于网格的运动统计(SF-GMS)特征配准算法。方法 SF-GMS算法使用网格对特征点邻域进行分割,统计每个邻域中特征点的数量,设置评分框架函数,根据邻域特征点数量和评分阈值判断特征匹配准确性。结果和结论 与典型性特征配准算法随机采样一致性(RANSAC)算法相比,SF-GMS算法能有效提高特征成功匹配率,并具有较好的实时性;对光照视角、遮挡、仿射、比例尺度缩放和旋转等环境变化具有较好的稳定性,能满足模拟医院病房场景下服务机器人自主导航的需求。
关键词:  网格分割  特征匹配  网格运动统计  医疗服务机器人
DOI:10.16781/j.0258-879x.2018.08.0892
投稿时间:2018-07-06修订日期:2018-07-31
基金项目:国家自然科学基金(61374039),上海市自然科学基金(15ZR1429100),沪江基金(C14002).
Application of feature matching algorithm based on grid-based motion statistics in medical service robot
YANG Jing-dong*,SHAN Ti-zhan
(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
*Corresponding author)
Abstract:
Objective To propose a scoring framework grid-based motion statistics (SF-GMS) feature matching algorithm to improve the poor real-time ability and inaccurate matching in the process of target recognition for medical service robots.Methods The feature point neighborhoods were segmented by SF-GMS algorithm using the grids, and the number of feature points in each neighborhood was counted and the scoring frame function was set to judge the feature matching accuracy according to the number of neighborhood feature points and the scoring threshold.Results and conclusion Compared with random sample consensus algorithm, SF-GMS algorithm effectively improved the successful matching rate, and had better real-time performance. SF-GMS algorithm had better stability to the changes of illumination view, occlusion, affine, scale and rotation, and could meet the demand of autonomous navigation in simulating hospital ward scenario for medical service robots.
Key words:  grid segmentation  feature matching  grid-based motion statistics  medical service robot