【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1683次   下载 1657 本文二维码信息
码上扫一扫!
人工智能技术在组织和细胞形态学评估中的应用
王斐1,魏培莲2,潘军3,武清2,于观贞2*
0
(1. 海军军医大学(第二军医大学)长海医院普外三科, 上海 200433;
2. 上海中医药大学附属龙华医院肿瘤七科, 上海 200032;
3. 解放军81医院全军肿瘤中心肿瘤内科, 南京 210002
*通信作者)
摘要:
形态学评估和特殊染色评分系统是目前基础和临床科研的重要组成部分,对于判断药物疗效和基因干预效果非常重要。然而,目前的视觉评分系统主观性强、重复性差、准确率低,极易出现漏诊和误诊。基于深度学习的人工智能技术有望克服这一问题,利用卷积神经网络能准确提取与肿瘤患者疗效和预后相关的内部特征,如肿瘤-间质比、神经侵犯和淋巴细胞空间分布;图像化和数字化显示药物干预疾病进展的疗效,同时能对与临床治疗、分型和预后相关的分子标志物进行定量化和自动化评分。人工智能技术应用于组织和细胞形态学评估后,将会推动临床药物评价和基础科研评价的一致性、重复性和准确性,有望进一步推动医学科研的发展。
关键词:  人工智能  肿瘤-间质比  神经侵犯  免疫组织化学
DOI:10.16781/j.0258-879x.2018.08.0923
投稿时间:2018-06-21修订日期:2018-07-12
基金项目:国家自然科学基金(81572856),上海中医药大学附属龙华医院高层次人才引进项目(LH02.51.002).
Application of artificial intelligence technology in tissue and cell morphology assessment
WANG Fei1,WEI Pei-lian2,PAN Jun3,WU Qing2,YU Guan-zhen2*
(1. Department of Surgery(Ⅲ), Changhai Hospital, Navy Medical University(Second Military Medical University), Shanghai 200433, China;
2. Department of Oncology(Ⅶ), Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;
3. Department of Medical Oncology, Cancer Center of PLA, No. 81 Hospital of PLA, Nanjing 210002, Jiangsu, China
*Corresponding author)
Abstract:
Presently morphological evaluation and special staining scoring system are important components of basic and clinical research, and are very important for judging the efficacy of drugs and gene intervention. However, the current visual scoring system has some disadvantages such as strong subjectivity, poor repeatability and low accuracy, and is prone to missed diagnosis and misdiagnosis. Artificial intelligence technology based on deep learning is expected to overcome these problems. In our study, we found that the convolutional neural network can be used to accurately extract internal features related to the treatment and prognosis of tumors, such as tumor-stroma ratio, nerve invasion and spatial distribution of lymphatic cells in tumor specimens, visualizing and digitalizing the curative effect of drug intervention on disease progression, and can quantify and automatic evaluate the expression of molecular biomarkers related to clinical treatment, classification and prognosis. The application of artificial intelligence technology in tissue and cell morphology assessment will promote the consistency, repeatability and accuracy of clinical drug evaluation and basic scientific research evaluation, and is expected to further promote the development of medical research.
Key words:  artificial intelligence  tumor-stroma ratio  neural invasion  immunohistochemistry