【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2011次   下载 1662 本文二维码信息
码上扫一扫!
智能医学影像识别研究现状与展望
周瑞泉1,2,纪洪辰1,刘荣1,2*
0
(1. 解放军总医院肝胆外二科, 北京 100853;
2. 南开大学医学院, 天津 300071
*通信作者)
摘要:
智能医学影像识别是基于人工智能技术,对X线片、计算机断层扫描、磁共振成像等常用医学影像学技术扫描图像和手术视频进行分析处理的过程,其发展方向主要包括智能影像诊断、影像三维重建与配准、智能手术视频解析等。智能影像诊断和影像三维重建与配准可提高影像识别的效率和质量,为疾病诊断和治疗提供帮助;智能手术视频解析可帮助外科医师学习、理解外科手术,并进一步指导手术过程。目前,对该领域的研究已取得一定的进展,正在逐步走向临床应用。本文就智能医学影像识别取得的进展进行总结,并对该领域的发展前景进行展望。
关键词:  人工智能  智能医学  影像识别  机器学习  卷积神经网络
DOI:10.16781/j.0258-879x.2018.08.0917
投稿时间:2018-06-21修订日期:2018-07-16
基金项目:
Intelligent medical image recognition: progress and prospect
ZHOU Rui-quan1,2,JI Hong-chen1,LIU Rong1,2*
(1. Department of Hepatobiliary and Pancreatic Surgical Oncology(Ⅱ), General Hospital of PLA, Beijing 100853, China;
2. School of Medicine, Nankai University, Tianjin 300071, China
*Corresponding author)
Abstract:
Based on artificial intelligence technology, the intelligent medical image recognition refers to the analysis and process of medical images scanned by medical imaging technologies such as X-ray films, computed tomography and magnetic resonance imaging, and surgical video. Major trends in intelligent medical image recognition include intelligent image diagnosis, three-dimensional reconstruction and registration, intelligent surgery video parsing and so on. Intelligent image diagnosis and three-dimensional reconstruction and registration can improve the efficiency and quality of image recognition, and provide a helpful method for clinical diagnosis and treatment; intelligent surgery video parsing can help surgeons learn and understand surgical procedures, and further guide the operation process. Now the research of intelligent medical image recognition has gained some theoretical and technological achievement and gradually been applied in clinic. In this paper, we summarized the progress of intelligent medical image recognition and put forward the development prospect in this field.
Key words:  artificial intelligence  intelligent medicine  image recognition  machine learning  convolutional neural network